人教版四年级数学下册第四单元教案7篇(「探究世界,从数学开始——人教版四年级数学下册第四单元教学计划」)

本文主要介绍人教版四年级数学下册第四单元教案,包括数学的基础知识和具体的教学内容。通过本单元的学习,学生将能够进一步巩固数字的认知和计算能力,提高数学素养和思维能力。

人教版四年级数学下册第四单元教案7篇

第1篇

1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

重点:体会十进制分数与小数的关系,初步理解小数的意义。

1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

学生依次读出:零点一、一点一一、九点五、五点九六。

2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

d.思考:我们选用的图都不一样,为什么都可以表示0.1?

学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。

师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。

生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

小数我们写的完吗?其实呀,小数的位数越多就分的越细。

大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

教师:通过刚才游戏,你们发现了什么?(出示课件)

师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

人教版四年级数学下册第四单元教案8篇

第2篇

人教课标版小学四年级下册第58、59页的内容:小数的性质

小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?

师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。

教师小结:这三个数量虽然各不相同,但表示大小相等、

设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

教师强调:我们如果遇到小数末尾有“0”的`时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

(2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)

设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

5、小数性质应用、【继续演示课件“小数的性质”】

(2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

说一说为什么有些数的末尾添上“0”,原数就发生了变化、

设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

第3篇

1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

3、培养学生的迁移、类推能力,以及良好的数学学习品质。

理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的`宽度仍用“米”做单位,还能用整数表示吗?

师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

师:那我们就可以说一位小数表示的就是十分之几。(板书)

(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

第4篇

人教版四年级下册教材第32、33页的例1及“做一做”。

教材选择学生熟悉的教室情境简要地呈现了“小数产生”的过程,通过实际的测量活动,体会小数产生的必要性。考虑到学生对长度单位比较熟悉,教材选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过将分米、厘米、毫米改写成米,说明把低级单位的数改写成高级单位的数可以用分母是10、100、1000……的分数表示,再进一步用小数表示。

2.让学生在初步认识分数和小数的基础上,弄清十分之几、百分之几、千分之几……与一位小数、两位小数、三位小数……的关系,进一步理解小数的意义。

3.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

弄清十分之几、百分之几、千分之几……与一位小数、两位小数、三位小数……的关系。

1.主要采用自主探究、讨论、发现的教学方法,先引导学生回忆毫米、厘米、分米与米的关系,并用分数表示,再把分数化成小数,从而了解小数的意义。

2.通过观察、分析、讨论、类推、迁移等学习方式,培养学生的自主学习意识和创新意识,学会探究问题的方法。

经典文学引入:你们熟悉《三字经》吗?我们来一起背几句好吗?《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?(意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。)

谈话:看来《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从左往右看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?

提问:从右往左看,10000、1000、100、10、1,接下去又是哪些数呢?它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。

?品析:从《三字经》中的数学问题入手,吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义埋下伏笔。】 游戏引入:同学们喜欢玩游戏吗?今天老师和你们一起玩个游戏,名字叫“估一估、测一测”。先请同学们估一估老师和你伙伴的身高?再测量他们的实际数据。

谈话:刚才在测量身高的'时候,得到的结果是1米多,如果用“米”作单位,就得不到整数的结果。像这样在实际测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。由于日常生活和生产的需要,从而产生了小数。

?品析:由日常生活中熟悉的测量情景入手,引起学生的学习兴趣,也使学生认识到数学与生活的紧密联系,数学学习显得更有意义。】

引导学生观察教材第32页例1,在进行测量和计算时,往往不能正好得到整数的结果,这时也常用小数来表示。

提问:我们知道1米=10分米=100厘米=1000毫米,那么以分米、厘米、毫米为单位的整数怎么用以米单位的小数表示呢?

提问:①用米作单位,1分米怎样用分数来表示? 为什么?(结合分数的意义说明)

把1米平均分成10份,每份是1分米,是1/10米,也可以写成0.1米。

①用米作单位,3分米怎样用分数和小数表示?7分米呢?

把1米平均分成100份,每份是1厘米,是1/100米,也可以写成0.01米。

①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?

把1米平均分成1000份,每份是1毫米,也是1/1000米,用小数表示是0.001米。

①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?

明确:照这样分下去,还可以得到万分之一米……也可以写成0.0001米……

像刚才小数点后面有一位的小数叫一位小数,有两位的小数叫两位小数……

在教学1分米=1/10米=0.1米时,先让学生初步感悟十进分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识两位小数、三位小数,从而归纳出小数的意义。

?品析:此环节合理安排引导和放手的时机,给学生自主探索的空间,加深学生对小数的认识和理解。】

质疑1:什么样的分数可以用一位、两位、三位……小数来表示?

分母是10、100、1000……的分数分别可以用一位、两位、三位小数表示。

十分之一、百分之一、千分之一……,分别写作0.1、0.01、0.001……

?品析:引导学生进行观察,使学生始终参与到概念的探究过程中,通过比较、归纳、分析和综合理解小数、分数之间的关系,最后抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。】

1.这节课我们学习了什么?你知道了什么?你还有什么问题?

(1)小数的意义:把单位“1”平均分成10份、100份、1000份……这样的一份或几份可以用分母是10、100、1000……的分数表示,也可以用小数表示。

(2)小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

2.认识了新的朋友“小数”,那么它该怎样读呢?听到小数又该怎样写呢?在下节课的研究中你就会明白了。

?品析:对知识点进行梳理,培养学生的概括能力和语言表达能力。】五、教海拾遗,反思提升

1.有关小数,三年级时学生已有了初步认识,在生活中也有所接触,如购物中的数学问题等。本节课,我通过让学生量一量来引入本课所学知识,从现实情景中感受小数的产生,促进学生进一步学习的欲望,激发学生学习的积极性。

2.重视学生的自主探究。在引入小数意义的教学时,学生在教师的指导下更多地是通过自主探究、深入感悟开展学习活动的。教师给学生提供了很大的学习空间。本节课学习的基础是分数的初步认识,教师利用米尺,将分母是10的分数与一位小数相联系,通过学生的观察、体验,感悟新知识,掌握新知识,并以此为基础,进一步探究两位小数、三位小数的意义。课堂教学中始终应该关注学生的有效学习,发挥学生的主体作用。

3.课堂结构体现层次性。课堂教学安排要努力体现学生的认知规律,先易后难,先扶后放。在本节课的教学中所采用的“一引、二放、三收获”正好体现了我的设计思想。在小数意义和小数计数单位教学中,首先通过教师的引导,让学生建立正确的概念,如借助直观工具建立一位小数的意义。我认为,在学生头脑中形成正确表象非常重要。在小数计数单位的教学中,我也同样如此安排。

小数的产生:在进行计算和测量时,往往不能正好得到整数的结果,这时常用小数来表示。

小数的计数单位是:十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

第5篇

人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

在学生初步认识分数和小数的基础上,进一步理解小数的意义。

理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的`每一份是几厘米?(每一份是1厘米)

出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

点击出示发现!你们个个都是自学小能手!老师为你们点赞!

谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

(过渡)学习的过程就是不断地克服困难,战胜自我的过程。

师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

第6篇

人教版四年级下册教材第34、35页的例2、例3、例4及“做一做”。

本节课借助学生已有的知识经验及生活经历,在生活中感受小数的读法和写法,通过大量的感性知识与数学活动,抽象、概括、提炼出小数的数位顺序表,使学生明确小数的数位名称及数位顺序,进一步体会生活中处处有数学的理念,从而达到巩固小数意义的目的。

1.理解小数的数位顺序表,知道小数的构成及小数各位上的数的含义。

2.掌握小数的读法与写法,会读、写小数,进一步理解小数的意义。

3.培养学生学习数学的兴趣和刻苦钻研、探求新知的良好品质。

教学重点:进一步掌握小数的意义,能比较熟练地读写小数。

教学难点:正确地说出小数部分每一位上的计数单位。

1.采用的教法是直观演示法、情景体验法和点拨法。从表象到抽象、感性到理性的设计层次符合小学生的认知规律,能有效地培养学生的自主学习能力。

2.具体的学法是合作讨论法、尝试与体验法、练习法,帮助学生养成好的自学习惯,学会与他人合作学习。

生活情景引入:同学们,有个小朋友遇到了困难,你们愿意帮忙吗?小红和妈妈逛超市,但她不认识价格表。(课件出示播放超市物品与价格)

观察物品价格,指名说一说。(结合学生回答板书:5.98、0.85和2.60)

揭示课题:超市里商品的价格都是用小数来表示的,这些小数该怎样读写呢?这节课我们将一起研究小数的读法和写法。(板书课题)

?品析:从学生熟悉的生活场景入手,容易引起学生的学习兴趣,也使数学与生活的联系更为紧密,数学学习显得更有意义。】

抢答题:地球上长的'最高的动物是什么?(学生抢答,猜测长颈鹿的身高)

出示教材第34页的情境图,学生读图,找出数学信息,教师板书小数。

?品析:这样的导入设计是为了激发学生的学习兴趣以及想要学的愿望,同时又为后面的学习提供了具体数据。】

故事引入:今天一大早,熊二就吵着要吃蜂蜜,熊大告诉它,只有回答出它提出的几个问题才会有蜂蜜吃。你愿意帮助熊二吗?

2.回忆一下:你是怎样读出这些数的?整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?(一、十、百、千……)

3.导入:在同学们的帮助下,熊二顺利拿到了蜂蜜。你知道吗,小数和整数一样,也有计数单位,也按照一定的顺序排列起来,这节课我们就来研究一下小数的数位顺序。

?品析:由学生喜爱的动画故事入手,容易引起学生的学习兴趣,同时又复习了整数的数位顺序和计数单位,为研究小数的数位顺序表打下了基础。】

(1)观察教材第34页例2的主题图,从图中你得到了哪些信息?

(2)观察并思考:这些小数和我们以前学的数一样吗?这些小数是由哪几部分构成?

小结:像1.8、5.63、12.378……这样的数都是小数,这些小数都由三部分组成:整数部分、小数点和小数部分。

(3)提问:小数点左边一位是什么位?计数单位是什么?表示什么?小数点右边一位的计数单位又是什么呢?

第7篇

课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。

本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。

1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。

通过练习和例3化简例4改写小数检验目标1、2的教学完成情况

1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。

4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。

昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的.回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)

3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?

(一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。

要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的长度。

2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?

0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?

生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的纸条就是量出了0.1米长的纸条。

生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.

生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条

生:我们发现1分米、10厘米、和100毫米的纸条都一样长。

师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?

(二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。

师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试

1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?

2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?

(1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.

(2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.

师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)

指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?

生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?

生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?

通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“

学生归纳:在小数的末尾添上”0“,小数的大小不变。

从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?

生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变

师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。

师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?

注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)

根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。

不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)

同学们像3.90米、0.30元等这些数根据小数的性质去掉它们末尾的0,小数的大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?

一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?

(2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。

出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?

把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)

提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“

应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?

同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)

请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?

今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?

我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。

1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。()

3、一个数末尾添上”0“或者去掉”0“,大小不变。()

(三)给下面的物品加上标签(以元作单位,用两位小数表示)。

小数的末尾添上”0“或去掉”0“,小数的大小不变。

★其他类似内容

1自我保护教案锦集4篇

自我保护教案锦集4篇

本篇文章为公文网站推出的“自我保护教案锦集”,收集了多种自我保护案例并整理成教案,旨在提高读者的自我保护意识和应对突发事...

查看剩余 86% 自我保护教案锦集4篇

2小班美术教案范文锦集4篇

小班美术教案范文锦集4篇

本篇文章为大家带来了小班美术教案范文的精选,包含了许多优秀的教案示范,旨在帮助教师更好地掌握小班美术教学方法与技巧,提升...

查看剩余 78% 小班美术教案范文锦集4篇

3幼儿园教案范文汇总4篇

幼儿园教案范文汇总4篇

本文汇总了多篇幼儿园教案范文,为幼教工作者提供了有益的借鉴和参考。这些教案内容详尽,方案实用,涵盖了多个年龄段的幼儿教学...

查看剩余 73% 幼儿园教案范文汇总4篇

4幼儿园小班教案范文集锦2篇

幼儿园小班教案范文集锦2篇

本文为幼儿园小班教案范文集锦,旨在为小班老师提供优秀的教学案例参考。通过案例分享,展示不同主题、不同教学策略与方法的教案...

查看剩余 75% 幼儿园小班教案范文集锦2篇

5小班美术教案范文锦集5篇

小班美术教案范文锦集5篇

本文为小班美术教案范文锦集,收集了多篇小班幼儿美术教案范文,涵盖了手工、画画、拼贴等多种主题和技法。适用于小班教师进行美...

查看剩余 80% 小班美术教案范文锦集5篇