七年级上期数学工作计划9篇(数学策划:探索七年级数学之旅)

本文将为您介绍七年级上期数学工作计划。本计划旨在帮助学生打下扎实的数学基础,提高解题能力和逻辑思维能力。通过系统学习数学概念和方法,培养学生的数学思维习惯和自主学习能力。同时,我们将结合实际应用,锻炼学生综合运用数学知识解决问题的能力。希望通过这一期的数学工作计划,学生能够在数学学习中取得更大的进步和成绩提升。

七年级上期数学工作计划9篇

第1篇

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

难点:理解有理数加法法则,尤其是异号两数相加的情形。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,

即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:

(2)若两次都是向西走,则他现在位于原来位置的西方50米处,

(师生共同归纳同号两数相加法则:[来源:z+··+]

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:

写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。

后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):

你能发现和与两个加数的符号和绝对值之间有什么关系吗?

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)= ( )。

((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0= ( )。我们不难得出它们的结果。

(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.

应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。

注意问题:要借助数轴来进一步验证有理数的加法法则)

七年级上期数学工作计划9篇

第2篇

会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。

通过探索 规律的问 题,进一步体会符号表示的意义,

通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。

(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。

要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

第3篇

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(三).关键:抓住实际问题中的数量关系建立方程模型.

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

分析:设前年这个学校购买了·台计算机,已知去年购买数量是前年的2倍,那么去年购买2·台,又知今年购买数量是去年的2倍,则今年购买了22·(即4·)台.

2·表示2·,4·表示4·,·表示1·.

根据分配律,·+2·+4·=(1+2+4)·=7·.

这样就可以把含·的项合并为一项,合并时要注意·的系数是1,不是0.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为a·=b的形式,其中a、b是常数.

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为·人.

解:设每一份为·人,则甲组人数为2·人,乙组人数为3·人,丙组为5·人,列方程:

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

解:(1)设每份为·个,则黑色皮块有3·个,白色皮块有5·个.

(2)设全书共有·页,那么第一天读了( ·+2)页,第二天读了( ·-1)页.

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意·或-·的系数分别是1,-1,而不是0.

2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?

3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米.

(1)两车同时出发,相向而行,出发多少小时两车相遇?

(2)两车相向而行,a车提前半小时出发,则在b车出发后多少小时两车相遇?相遇地点距离甲地多远?

4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离.

5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?

一、1.(1)·=4 (2)·=4 (3)·=-5 (4)·=- (5)·=30 (6)·=11

二、2.705人,设育红小学1995年学生人数为·人,列方程320= ·-150.

3.(1)4 小时,设出发后·小时相遇,列方程60·+48·=460.

(2)3 小时,设b车开出后·小时两车相遇,列方程60 +60·+48·=460.

5.1 分钟,设经过·分钟两人首次相遇,列方程550·-250·=400.

理解移项法,并知道移项法的依据,会用移项法则解方程.

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

分析:设这个班有·名学生,根据第一种分法,分析已知量和未知量间的关系.

4.需要分出4·本和还缺少25本那么这批书共有多少本?

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3·+20=4·-25的两边都含有·的项(3·与4·),也都含有不含字母的常数项(20与-25)怎样才能使它转化为·=a(常数)的形式呢?

要使方程右边不含·的项,根据等式性质1,两边都减去4·,同样,把方程两边都减去20,方程左边就不含常数项20,即

将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4·变为-4·后移到左边.

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

答:移项使方程中含·的项归到方程的同一边(左边),不含·的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为·=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法1:从原问题的解答中,已求的这个班有45个学生,只要把·=45代入3·+20(或4·-25)就可以求得这批书的总数为:

解法2:如果不先求学生数,直接设这批书共有·本,又如何布列方程?这时该用哪个相等关系列方程呢?

这批书共有·本,余下20本,共分出(·-20)本,每人分3本,可以分给 人,即这个班共有 人.

这批书有·本,每人分4本,还缺少25本,共需要(·+25)本,可以分给 人,即这个班共有 人.

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2·-·-=-1.

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

3.解方程·+21=36得·=________;由10·-3=9得·=______.

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

四、8.·=1 9.207,5,设从甲粮仓运出·吨,1000-·=798-(212-·)

第4篇

3、 求解一元一次方程及其在实际问题中的应用(考点)

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

3、 求解一元一次方程及其在实际问题中的应用(考点)

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

第5篇

1.熟练地进行有理数加减混合运算,并利用运算律简化运算;

例2.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:

练一练:1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:

第6篇

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

2: 判断下列是不是 方程,是打“adic;”,不是打“×”:

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

1.判断下列是不是一元一次方程,是打“adic;”,不是打“×”:

2.老师要求把一篇有20__字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

第7篇

教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。squo;

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

先笔做:以顶点a的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

回答:看图说出下面各图的特点,再说一说图中各字母表示什么

想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

第8篇

1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;

2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.

我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.

方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.

其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.

解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.

例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为()

解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选b.

方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.

例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?

方法总结:解决这类问题的关键是正确区分图形的形状和名称.

本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.

第2课时 从不同的方向看立体图形和立体图形的展开图

1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;

2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)

诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?

例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是()

解析:从上面看依然可得到两个半圆的组合图形.故选d.

方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.

例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.

解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.

方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.

第9篇

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

?课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

教学难点:思维习惯的转变,分析数量关系,找相等关系。

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

在这里我开始向学生渗透列方程解决实际问题的思考程序.

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流.

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习.

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

★其他类似内容

1个人销售业绩工作总结20篇

个人销售业绩工作总结20篇

本文围绕个人销售业绩进行总结,分析自身优劣势,总结有效的销售策略及方法,提高个人销售业绩,为公司的发展贡献力量。...

查看剩余 88% 个人销售业绩工作总结20篇

2药品销售工作总结7篇

药品销售工作总结7篇

本文主要总结了药品销售工作中的经验和教训,包括团队建设、销售技巧、市场调研等方面,对于提高销售业绩和服务质量具有一定的借...

查看剩余 82% 药品销售工作总结7篇

3月度工作总结范文22篇

月度工作总结范文22篇

本文为月度工作总结范文,旨在为广大工作人员提供实用的工作总结范文,提高职场竞争力,进一步完善工作流程,实现个人和公司的共...

查看剩余 77% 月度工作总结范文22篇

4财务出纳工作总结5篇

财务出纳工作总结5篇

本文是一篇关于财务出纳工作总结的文章,主要分析了该工作中的难点、优点以及需要注意的事项,旨在为财务出纳工作提供参考和改进...

查看剩余 71% 财务出纳工作总结5篇

5月度工作总结范文21篇

月度工作总结范文21篇

本文为月度工作总结范文,旨在为就职者提供参考。总结包含了本月工作的目标、完成情况、问题分析以及下月计划等内容,有助于个人...

查看剩余 89% 月度工作总结范文21篇