植树问题教案12篇(《引导学生参与植树,践行绿色未来》——植树教案)
植树是我们应该关注的一个永恒话题。如何做好植树工作,让树木长势健康,发挥更好的作用,是每一个从事绿化事业及相关工作人员必须要深入领会和研究的问题。本教案介绍植树过程中应注意的事项,帮助大家更好地了解如何实现植树效益最大化。
第1篇
?植树问题》是《义务教育教科书.数学》五年级册第七单元《数学广角》中的内容。
教材将植树问题分为几个层次,有两端都栽、两端不栽、以及封闭曲线(方阵)中的植树问题。例1讨论的是在校园里的一条小路一边植树,需要多少棵树苗的问题,这是关于一条线段的植树问题。小路全长100米,每隔5米栽一棵树,两端都要栽,一共要准备多少棵树苗呢?让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程。例2是在例1的基础上继续探讨关于植树问题的另一种情况。教材给出动物园里绿化队在大象馆和猩猩馆之间的小路两旁栽树的问题,根据实际情况在这条小路两端都不栽树。本节课教学第106页——107页例1、例2和做一做的内容。
本节课在教材的处理上我作了如下调整,把原例1中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究一条线段上的植树问题三种情况中间隔数与棵数的关系,将例2分成两道题放到利用模型、解决问题环节,有利于学生用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。
1.在给定目标下,感受针对具体问题提出设计思路、制订简单的方案解决问题的过程。通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
2.学生已经学习了《除法的含义》、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
3.借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。
4.学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。
5.能运用所得到的规律解决实际问题。能和他人合作交流。
6.能积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,建立自信心。感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。
重点:探索规律,建立植树问题模型,会应用植树问题的模型解决一些相
难点:理解“间隔”与“数“之间的对应关系,应用植树问题的模型灵活
教法:以情境教学法为主,直观演示法、引导发现法、讨论法、讲解法为辅。
学法:以学生发展为本,融观察、操作、合作、交流等方法为一体。
师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:
1.一根木头长10米,要把它平均锯成9段,需要锯几次?
2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)
师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)
(这一环节,旨在使学生在轻松的活动中为新课的学习作铺垫,而且让学生体会到只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律,并应用这些规律去解决实际问题。)
园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由. (创设为园林工人设计植树方案的情境,贴近学生生活,让学生感受到数学问题于生活,为生活服务的思想,并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)
(先给学生创设宽松的思维环境,让学生打开思路,找到在一条线段上栽树时的不同方法,让思维如花般绽放。)
③探究间隔数与总长、间距的关系。(向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程。)
④共同探究原因。(演示:树与间隔之间的一一对应关系。)(让学生在一个开放的情境,突现学生的`知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。)
①植树问题规律,②解决植树问题方法:先求出间隔数,再看属于哪种类型。
师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:
1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?
2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?
3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
(练习题设计有层次性,充分体现本节课的重点,难点,并且利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。)
第2篇
植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。
1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。
2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。
3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。
1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。
2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。
第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,
在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的`名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1.
第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。
第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。
作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。
1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。
2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。
4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。
第3篇
1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。
2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。
培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。
教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?
教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?
教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?
教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?
教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)
引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?
教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)
教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)
教师:20表示什么?5表示什么?4表示什么?(分别提问)
预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。
教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)
教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?
教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)
教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。
例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?
教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。
教师:今年的'圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)
练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?
教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)
练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?
练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?
思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!
教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:
练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?
第4篇
?义务教育课程标准实验教科书数学(四年级下册)》第p117- p118
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
理解“植树问题(两端要种)”的特征,应用规律解决问题
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)
师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)
(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)
(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)
师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)
1、用图象语言描述“植树棵数与间隔数”之间的关系。
师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)
(1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?
(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)
(3)通过画图,我们发现这条路的两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)
(4)在线段图上,我们用点表示栽的树,几个点就是几棵树,通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?
师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!
师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。
课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)
(3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?
(3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?
(5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?
(6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。
②对于这几种方法,你们有什么看法吗?(生:我认为……)
③擦去错误答案,剩下正确答案:100÷5=10(个)10+1=11(棵)
④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。
⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。
课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?
(1)生轻轻读题,说说从这个题目中你了解了些什么信息?
师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?
课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?
(1)生独立阅题,说说这个题目中又有哪些数学信息呢?
(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)
(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?
(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)
(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)
第5篇
本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。
?义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。
“植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。
2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。
引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。
师:春天是个植树的好季节,你们知道植树有哪些好处吗?
植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)
(课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?
?学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。】
?设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的'思想。放手让学生设计方案并冠名,充分体现学生的主体地位。】
(1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?
?设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。】
到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。
小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?
?学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。】
我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)
师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。
师:两点间的距离可以用哪个词语来表示呢?(间隔)
刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?
?学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。】
?设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。】
?设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。】
如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?
?学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】
小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。
?学情预设:学生可以用画线段图、算一算、数一数等方法完成。】
?设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。】
谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?
得出结论:两端都栽树时,棵数比间隔数多1.也可以说间隔数比棵数少1.
?设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】
老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。
两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……
?设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】
我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。
?设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。】
?学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?】
(2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?
(3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?
(4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?
师:如果老师想排成一排,每两个同学的间隔是2米,想想,这个车鼓队伍头尾相距多少米?
(5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?
?设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。】
为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?
?设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】
?植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。
导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。
在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。
本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
第6篇
1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。
难点: 掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。
1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。
师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。 学生动手试一试。
学生拿出一根20厘米的.毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。
指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。
同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。 相互评价,互提建议。
想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1.
经过集体交流,发现栽树的棵数比间隔数多1.在100米长的小路上共有20个间隔,那么就可以栽21棵树。
因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。
教师表扬能自己正确列式的学生,并请他们阐明思考过程。
(1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?
1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?
2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?
3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?
4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?
1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。
2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。
难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。
教师根据学生回答板书:棵数=全长÷间隔长度+1 那么已知间隔长度和棵数,怎样求全长呢? 答后板书:全长=间隔长度×(棵数-1)
为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2) (7)比较与例1的不同。 先分组讨论,再集体交流。
例1是两端都要栽树,所以棵数比间隔数多1. 例2是两端都不栽树,所以棵数比间隔数少1. (8)教师讲解,帮助学生理解。
教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1.
这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次) 请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。 看一看能得出什么结论。
1、两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米?
2、两栋楼之间每隔2米种一棵树,共种了 15棵。这两栋楼相距多少米?
3、甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?
4、小明家门前有一条35米的小路,绿化队要在路旁栽一排树。每隔5米栽一棵树(一端栽,一端不载)。一共要栽多少棵数?
学生独立思考小组讨论,后集体交流。 教师指导:棵数=间隔数
1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2、掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。
难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。
1、前两节课都学习了有关“植树问题”的哪些情况?
(1)两端都植树,则棵数比间隔数多1. 全长、棵数、间隔长度之间的关系:
(2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系:
间隔长度=全长÷棵数 (3)两端都不植树,则棵数比间隔数少1.
你还知道有关“植树问题”的哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的。
同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。
生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。
(2)引导学生:把这类问题转化成在封闭的图形上植树的问题。
学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。
师:观察封闭图形上的棵数与间隔数,你有什么发现?
生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)
生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。
1、一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵?
2、社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵?
3、时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?
同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。
四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?
小组讨论,看一看能得出什么结论。 重点是根据条件研究计算方法。
(4)分小组汇报设计方案。 根据不同的方案进行计算。
⑤共6行,每行8张。 列式:(6+1)×(8+1)=63(个) 还有其他方法吗?
但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。
李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)
讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3-1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6-1)=90(级)。 (6)归纳。
这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。
(1)计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米?
(2)椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?
(3)舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人?
第7篇
本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。
1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。
2、使学生经历和体验复杂问题简单化的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?
通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)
师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。
4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)
1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:我们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。
出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。
同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?
b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。
c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?
(1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)
(2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。
教师:应用这个规律,我们能不能解决例1的问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?
①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)
刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)
园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)
教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。
全路长(米)间隔距离(米)间隔数(个)棵数(棵)
2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?
3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)
“植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的'过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。
本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。
教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。
植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:
一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;
二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。
一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。
二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。
第8篇
1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。
2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的有效方法的能力。
新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。
师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)
为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。
生:路全长有60米,只在路的一边栽,每隔5米栽一棵。
师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。
大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3 m。一共要栽多少棵树?
师:这道题和上节课学的'植树问题有什么不一样呢?
提示:小路的两端都是场馆,还需不需要栽树呢?还有需要注意的吗?到底要栽几棵,我们还是用前面学习的方法,举简单的例子(9米、12米、15米、21米)画一画,栽一栽?
小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:
师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?
讨论:在两头都不种的情况下,棵数为什么会比间隔数少1呢?师:那大象馆和猴山间栽多少棵数?
教师追问:为什么要“×2”?(因为小路两旁都要栽树)
师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。
师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。
2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。
1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?
2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵有多少米?
3、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!
第9篇
(一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。
(二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。
(三)在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用
1.问题一:(出示图片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?
师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?
小结:同学们用以前学习的植树问题帮我解决了这个数学问题。
2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?
[通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。]
师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?
(让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。)
小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?
(1)你可以自己最喜欢的方法来说明你的'答案是怎么来的
(2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。并写出算式。(花盆可以用符号表示)
[把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。]
2.反馈:你是怎么想的?(先把学生的四种方法都出来,再讲评每一种方法)
师:你能解释一下是怎么想的吗?(听完学生说自己的思路如果他没画图的,问一下用同样的算法,但是画图的)
[通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。]
[通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。]
小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。
1.抛出问题:除了给桂花树正方形的台摆鲜花,在学校的其他的还有其他的一些地方也要摆一些鲜花,
2.反馈:你是怎么算的?(结合图说明算式的意思)
3.讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?
小结:我们从正方形,三角形,六边形等等作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)边数=盆数
展开:圆坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?
交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?(学生在电脑上进行多媒体演示并讲述想法)
你还有什么新的发现?(引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)
[让学生在电脑上直观操作,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。]
5.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?
小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。
[通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。]
1.学校为了美化校园环境,开展了摆花设计方案征集。有以下三种,请选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?你还能设计出其他方案吗?
第10篇
1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。
2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。
3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。
1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。
2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。
2、难点:灵活应用发现的规律解决一些相关的实际问题。
人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。
师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。
两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?
[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的'知识学习打下良好的基础]
师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。
请同学们伸出你的左手张开五指,数数手指之间有几个空?
师:老师要考考同学们的眼力。四根手指之间有几个间隔?
师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。
师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!
[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]
师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?
光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!
[设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。]
1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?
每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。
3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!
4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。
下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。
用最直观、最简洁的图形表示树,把你们的想法动手画一画。
[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]
师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。
[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]
师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。
1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!
谁想第一个说?生答:观察真仔细。老师给你点个赞!
看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。
为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。
[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]
运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。
1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?
2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)
3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。
为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?
首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。
老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数
刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:
把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?
在解决这个问题时我们可以借助线段图。把答案写练习本上。
同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?
[设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]
孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?
第11篇
2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
1、教学例5:非洲野狗的速度是56千米/小时,鸵鸟的速度是非洲野狗的1.3倍,鸵鸟的速度是多少千米/小时?
⑴想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
①怎样列式?②为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
⑸通过刚才同学们的.计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?
③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2. 4×3的乘数是3比1大,求的积是2.4的3倍(或3个2.4那么多),所以积比被乘数大。
④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)
1、做一做:3.2×2.5= 0.82.6×1.08=2.708先判断,把不对的改正过来。
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
⑤专项练习:练习一12题先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。
当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教后反思:在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。
第12篇
本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。
这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。
1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。
3、在解决问题的.过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
4、体会数学模型的生活意义与作用,体验到学习的喜悦。
采取什么策略正确解决“一条线段并且两端都种”的植树问题。
发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。
4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。
1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?
5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1.(板)
1)议:已知什么,求什么?(师在模型的相应地方画√)
1)议:已知什么,求什么?(师在模型的相应地方画√)
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?
1手指点画教案8篇
“手指点画教案”是一种适用于儿童学习的教学方法,旨在通过手指点画、模仿绘画、语言描述等方式,帮助孩子们学习写字、数学等基...
查看剩余 75% 手指点画教案8篇
2玩得真开心教案2篇
本次教案以“玩得真开心”为主题,力图通过游戏和活动的形式,让学生们在轻松愉悦的氛围中学习知识、增强体质、培养团队合作精神...
查看剩余 72% 玩得真开心教案2篇
3摇篮教案中班8篇
《摇篮教案中班》是一本面向0-3岁儿童的亲子教育指南,旨在帮助父母早期教育孩子的重要性,促进儿童身心健康发展。本书涵盖了情感...
查看剩余 86% 摇篮教案中班8篇
4自我保护教案锦集4篇
本篇文章为公文网站推出的“自我保护教案锦集”,收集了多种自我保护案例并整理成教案,旨在提高读者的自我保护意识和应对突发事...
查看剩余 80% 自我保护教案锦集4篇
5小班美术教案范文锦集4篇
本篇文章为大家带来了小班美术教案范文的精选,包含了许多优秀的教案示范,旨在帮助教师更好地掌握小班美术教学方法与技巧,提升...
查看剩余 71% 小班美术教案范文锦集4篇