高一数学知识点总结共高一数学知识点总结大全非常全面4篇(高一数学必备知识点:完整总结与详细解析)

本文为高一数学知识点总结大全,涵盖了高一数学的各个知识点,包括函数、三角函数、解析几何、数列等内容。内容准确全面,适合高一各个层次的学生学习和复习。是一份不可多得的数学学习宝典。

高一数学知识点总结共高一数学知识点总结大全非常全面4篇

第1篇

多数中等生的数学成绩是很有希望提升。一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算充足,还有时间进行调整和优化。所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。

什么是备考方向?所谓备考方向就是考试方向。在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。

题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。

每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。很多学生抱怨时间不足,每天做完作业以后,身心疲惫。面对一堆题目,特别是数学题,可以注重以下几个角度:

(1)弄清楚自己的需要。例如拿到老师布置的作业,无论是试卷还是课本习题,如果带着情绪做,那么效果肯定不好。首先要弄清自己的需要,比如这些题目中哪些题目质量好?哪些是你还没有弄懂的?哪些是以前常出现的?哪些是你肯定会做的等等,你最想解决哪题?

(2)制定目标。如果应付老师来做题无疑导致做题质量不高,那么在做题之前应该制定一定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你肯定有很多收获。

高一数学知识点总结共高一数学知识点总结大全非常全面5篇

第2篇

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_q为非零常数).

如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项?a,g,b成等比数列?g2=ab.

(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_,则am·an=ap·aq=a.

(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-m.

(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.

(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

(1)等比数列的前n项和sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

第3篇

6直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

19推论2三角形的一个外角等于和它不相邻的两个内角的和

20推论3三角形的一个外角大于任何一个和它不相邻的内角

22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等

23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等

24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等

26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等

27定理1在角的平分线上的点到这个角的两边的距离相等

28定理2到一个角的两边的距离相同的点,在这个角的平分线上

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

69正方形性质定理1正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91相似三角形判定定理1两角对应相等,两三角形相似(asa)

92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)

95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

126切线长定理从圆外一点引圆的'两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合

149如果一个三角形的两个角相等,那么这两个角所对的边也相等

第4篇

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

2、已知函数f(x)=3x+k(k为常数),a(-2k,2)是函数y=f-1(x)图象上的点.[来源:z_]

(2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求实数m的取值范围.

★其他类似内容

1会计实习心得体会4篇

会计实习心得体会4篇

会计实习是会计专业学生在校期间的重要环节。实习期间,学生通过实际操作和观察企业的财务状况,对于会计知识有了更深刻的理解...

查看剩余 89% 会计实习心得体会4篇

2库管实习报告范文4篇

库管实习报告范文4篇

本文是一份库管实习报告范文,主要介绍了实习期间所参与的工作内容、工作成果以及个人收获。通过实践,学习到了许多有关仓库管理...

查看剩余 76% 库管实习报告范文4篇

3青春励志演讲稿4篇

青春励志演讲稿4篇

青春是生命最美好的时光,也是最宝贵的财富。青春励志演讲是一种让人振奋精神、激发热情的有益活动。在这个信息爆炸时代,人们需...

查看剩余 83% 青春励志演讲稿4篇

4成长小学生作文4篇

成长小学生作文4篇

“成长小学生作文”是一个展示小学生文学创作成果的平台,旨在鼓励小学生积极参与文学创作,提高写作能力和阅读理解能力,同时展...

查看剩余 76% 成长小学生作文4篇

5假期社会实践活动心得体会4篇

假期社会实践活动心得体会4篇

在假期里,许多人都选择参加社会实践活动,这不仅可以拓宽视野,还能锻炼个人能力。在活动中,我们收获了很多,也体会到了很多。...

查看剩余 77% 假期社会实践活动心得体会4篇