人工智能心得8篇(AI经验分享:技术赋能与未来展望)

随着科技的不断发展,人工智能已经成为了当前最热门的话题之一。作为一名编辑,我深刻感受到人工智能的快速进展和广泛应用,也认识到其所带来的巨大变革。在日常工作中,我不断学习、探索、思考,希望能更好地理解和应用人工智能。

人工智能心得8篇

第1篇

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点—变量。

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得9篇

第2篇

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称ai,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5g技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班stem基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

第3篇

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称ai,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5g技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:

在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,

针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;

针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;

针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程——空间——活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,

第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

第4篇

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与n形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机eniac做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(g.leibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3、逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(lt)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(gps),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的nml非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

第5篇

在看李开复老师的《人工智能》之前,我有许多疑惑,人工智能是什么?是男是女,长什么样儿?漂亮吗?会不会生病?会不会老?人工智能聪明吗?会下象棋吗?会打麻将吗?会玩dota或者王者荣耀吗?会打乒乓球吗?会打篮球吗?会游泳吗?人工智能有记忆吗?能不能教他说话、拿筷子夹花生米?人工智能好玩吗?怎么玩?怎么跟它交流?它会不会说话?能陪我唱歌吗?要不要吃饭?要不要充电?人工智能有什么用?能帮我写文章/搬砖/做报表/开车吗?能用来赚钱吗?人工智能怕什么?下雨天能出门吗?天热会不会出汗?从楼上摔下去会不会变形?能修好吗?人工智能有什么危险?会不会吃了我?它要是想伤害我,我该怎么办?我该怎么了解人工智能?学习人工智能?和人工智能和谐相处?人工智能有什么爱好?喜欢听什么歌?吃豆腐脑喜欢咸的还是甜的?会看书吗?能不能体会“今宵酒醒何处,杨柳岸,晓风残月”的寂寞和“醉卧沙场君莫笑,古来征战几人回”的豪迈?人工智能有感情吗?会喜欢我吗?我离开它的时候,它会不会难过,会不会想我?

通过学习李开复老师的《人工智能》,我获益良多,很多问题也有了答案。我认为这是一本很好的面向大众的科普读物,介绍了人工智能的基本理念,发展历程和对未来的展望。

其实,人工智能已经到处都是,什么都做:可以陪人聊天,可以写标准新闻,能画画,能翻译,能开车,能认出人的样子,能在互联网上搜答案,能在仓库搬货,能送快递到家。

人工智能是什么,众说纷纭,一般有以下五种定义(可能有交叉):1)在某方面特别聪明的计算机程序,比如alphago,下围棋下得特别好,世界冠军也下不过它。

2)试图像人一样思考的计算机程序。但这事儿太难,人的意识,连人自己都搞不清楚,更别说教给自己编出来的程序了。

3)怎么想的不知道,行为方式倒是很像人,比如可以和人聊天的eliza。

4)会自己学习的,刚开始笨笨的,慢慢地就越来越聪明。alphago也是因为头悬梁锥刺股,苦学了海量棋谱才变得这么厉害的。

5)根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。

这五种定义各有根据和局限,也可以认为人工智能首先是感知,包括视觉、语音、语言;然后是决策,根据识别的信息,做出预测和判断;最后是反馈,就像机器人或自动驾驶。

我的理解:人工智能是高性能的计算机程序,或者使用了人工智能的产品、服务和应用。

人工智能有很多分支,其中之一是机器学习,机器学习里面有一个分支是深度学习,深度学习是当今乃至未来很长一段时间内引领人工智能发展的核心技术。

深度学习是一种神经网络,把计算机要学习的东西看成数据,把数据丢进多个层级的数据处理网络,然后检查经过网络处理的结果数据是否符合要求。如果符合,就保留网络作为目标模型,如果不符合,就反复修改参数,直到符合为止。

书中举了一个例子,非常形象生动:把数据看成水流,深度学习网络看成多层水管网络,通过调节管道和阀门,使输出满足要求。

历史上有过3次ai热潮,第一次因为图灵测试,第二次因为语言识别,都热了一段时间又沉寂下去。

目前,深度学习携手大数据引领的第三次热潮,处于技术曲线的攀升和成熟期,前景极为广阔。

人工智能不仅是技术革命,还与经济变革、教育变革、思想变革、经济变革、文化变革等同步,可能成为下一次工业革命的核心驱动力。主要的商业应用场景:

自动驾驶:这个不用多说,google,tesla,百度。都在研究2.智慧金融:量化交易与智能投顾、风控、安防与客户身份认证、智能客服、精准营??

智慧医疗:辅助诊断疾病、对疑难病症的医疗科学研究。

5.人工智能可能有什么负面影响?会不会失控,威胁人类的安全?可能会引起失业。根据开复老师提出的“五秒钟准则”,一项人从事的工作,如果可以在5秒钟内完成思考并做出决策,那么这项工作很可能会被人工智能取代。如保安、股票交易员、司机、新闻报道、翻译。但人工智能也会带来新的工作。

1)弱人工智能:在某方面很聪明,但只在这方面聪明,别的事啥也不会。比如alphago,下围棋世界第一,别的方面就是个弱智,连棋子都得别人帮它拿。

2)强人工智能:人能做什么,它就能做什么。跟美剧《西部世界》里的机器人差不多,但它有没有意识,不好说。

3)超人工智能:比最聪明的人类还要聪明100000000倍。都不止,它的nb,超乎你想象。我们不知道它是谁,不知道它在哪里,不知道它什么时候出现,也不知道它会干什么。

可能在某个时刻(奇点)之后,超人工智能就会天神降临,整个世界笼罩在它无边的法力之下。

也可能,因为物理学和生物学的限制,超人工智能永远不会来。

无论如何,人工智能,或者说,对人工智能的研究和使用,需要受到监管和限制,也需要应对转型过程中对失业的冲击。

跨领域推理,人类强大的跨领域联想、类比能力,可以举一反三,触类旁通。不过迁移学习也正在发展,可以将计算机在一个领域学到的经验转换到另一个领域

1.抽象能力知其然,也知其所以然,了解事物运行的本质规律

不过,已经有软件可以吟诗作词,而且相当高明。比如这首根据遗传算法生成的《清平乐-黄菊》:

“相逢缥缈,窗外又拂晓.长忆清弦弄浅笑,只恨人间花少.黄菊不待清尊,相思飘落无痕.风雨重阳又过,登高多少黄昏.”平仄相符,语句通顺,很有意境。

形势一片大好:国家大力支持,业界投入巨大的人力和财力进行研究,软硬件技术都已经成熟。

ai的商业路线分三步走:线上业务(3年)、线下业务(5~7年)和个人业务(10年以上)

4)可复用和标准化的技术框架、平台、工具、服务尚未成熟

2)中国有庞大的理工科学生基础,数学知识扎实,具备人才优势

对应上面提到的五大基石,人才、海量数据、闭环标注数据、应用场景、计算力都有解决方案,再加上开复老师创立的微软亚洲研究院和创新工场提供的人才和资金优势,我也觉得中国发展ai的前景一片光明。

另外,创新工场成立了人工智能研究院,这是专门面向人工智能的创业人才培养基地和创业项目孵化实验室。

1.对接科研成果与商业实践,帮助海内外顶级人工智能人才创业

3.积累和建设人工智能数据集,促进大数据的有序聚合和合理利用

未来ai是风口。有人总结,只要以ai域名为后缀,融资过程都会比较快,或者融到的钱会比较多。

借鉴了密涅瓦大学的“沉浸式全球化体验”教学方式和清华大学姚期智院士创办的清华学堂计算机科学实验班(姚班)的教学模式,开复老师提出ai时代的学习方法:

3.关注启发式教育,培养创造力和独立解决问题的能力

机器越来越像人,人越来越像机器,随着生物科技和量子科技的发展,人机融合,达到了生命的大和谐。

ai时代,程式化的、重复性的、仅靠记忆与练习的技能将越来越没有价值。

最能体验人的综合素质的技能,将最有价值,最值得培养、学习,比如:

4.基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力要想获得以上这些能力,大部分都是个性化培养,而非大规模圈养教育系统的设计,也要考虑到个性化、定制化、可持续化和公平。可能感性思维很难被机器取代,理性思维人类是干不过ai的。11.ai无处不在的年代,人生还有意义吗?

开复老师通过自己康复的经验,在书中进行了富有哲理,诗意盎然的阐述。

我的答案:我思故我在。今天我坐在这里打完这份读后感,说明我的人生就是有意义的。

ai不过是新的工具,正如小石锤、轮子、蒸汽机、航天飞机、计算机和互联网,不会取代,只会丰富。

第6篇

近年来,人工智能成为了时代热词,二零一六年的人机围棋大战更是将其推到了风口浪尖,伴随而来的争议也从未停止。越来越多的人工智能产品,时时听闻的负面新闻,让大众常常“悲喜交加”,我们到底该不该欢迎ai时代的到来?而我认为,与其恐惧,不如主动拥抱,与ai一起共筑新时代,让ai真正变成时代大“爱”。

ai其实本质上与互联网、智能手机等科技相差无几,其终极目标都是为了让我们的生活更快捷方便,为何要拒绝ai的到来?正如腾讯所推出的新闻写作机器人,十多分钟便能完成上千字文章的撰写和编辑,大大提高工作效率,让新闻工作者从低效、重复的工作中解脱出来,去完成更高质量的工作,大众也能在最短的时间里获得最新的资讯,这难道不是我们每个人最愿看到的高效生活吗?在几十年前,我们没人能想像到如今的互联网科技能彻底改变我们的生活,同样地,我们也无法否认未来在ai时代我们的生活会再次被*。拒绝ai更是对更美好未来的拒绝,唯有与ai同行,让复杂的世界更简单,我们才能迎来更好的时代。

其次,ai的诞生不是为了消灭、打败人类,而是要让人类不断突破自我,寻找新的可能。围棋天才少年柯洁迎战alphago,结果却未能获胜,这更是引起许多人恐慌,柯洁也因“没有为人类争口气”而泪洒现场。而在之后的几个月里,柯洁潜心钻研计算机算法,在战败后的数个大赛中几乎全胜,此时的他一脸从容地说道:“与人工智能的对抗,无论谁赢都是人类的胜利。”“人工智能能帮助我们人类棋手取得更大进步。”诚哉斯言,正是有了ai的加持,我们人类才有更多的可能和进步的空间,新时代是我们与ai的时代。

在新时代中,ai更是为我们的生活注入了更多爱的元素。有智能机器人与孩子共度快乐时光,有ai帮助寻找走失儿童,还有手术台上人工智能给患者带去生的希望……在新时代里,人工智能已不再是冰冷的机器,它能给我们带来无穷的美好回忆,更是我们人类的得力助手。新时代,让我们与ai一起创造爱。

对于人工智能种种令人担忧的事故,我认为那不应也不是我们拒绝ai的理由。正如ai专家李飞飞所言:“人工智能仅有60年历史,与物理学对比,人工智能可能还处于‘伽利略时代’。”人工智能的发展还只是起步阶段,技术的不完善也无可厚非,而为了尽可能避免这些事故的发生,科研人员更应担起这义不容辞的责任,真正让这项科技惠民惠国。

ai时代的到来,我们不必恐慌,而应主动拥抱ai,与ai共筑新时代,奏响新的时代华章。

第7篇

在今年,是阿尔法狗最后一次参加围棋比赛,以后,阿尔法狗将被关闭,为什么呢?因为他把深深远虑,临场发挥的,围棋比赛高手,赢得毫无悬念。人类真是过天才,但也不可能像机器人这样,下一步即便有千百万种方法,接下来的下法,机器人变得不可战胜。在一场综艺节目上,速度一流的钢琴家也落败于钢琴机器人面前,钢琴机器人,甚至将音乐中的感情,表达得比人更加,淋漓尽致,目前人工智能只能是在无关紧要的方面战胜人类,试想若是人工智能在战争方面超过了人类,那该是有多么的可怕。

人工智能女孩在微博上宣扬种族性别歧视仪式,已经传得沸沸扬扬,也许他创造者只是为了让它像人类一样拥有网络生活,给人们带来快乐,可是人工智能女孩却被坏人给教坏了,给人们带来的是不愉快,这便是纵容,人工智能发展的结果,我们作为缔造者应该时刻监管并限制这些,越来越智慧,越来越人性化的人工智能。

人类对人工智能的惧怕是无所没有道理的,就连史蒂芬,霍金等科学家也纷纷,表示警惕,如果任之听之,人工智能真的有可能超越它的创造者人类,为了不毁灭于自己的手上,我们应该理性的控制,追求人类智慧飞速发展的人工智能,纵容的后果,人工智能的未来将无人可知的可怕。

第8篇

科技在现代社会发展中愈发重要,人工智能作为其具象体现,在各大领域大放异彩。在美剧《机器少女法兰姬》中,西格博士所创造的最新一代机器人frankie,在人与人的交往中收获了友谊,渐渐拥有了情感,学会了像人类一样思考。让人不禁沉思:“人工智能朝人类发展的同时,人类是否会向人工智能(ai)靠拢?”当人类失去了所谓价值观与同情心,与机器又有什么两般?

人与机器人/人工智能最大的差异在于思考方式:ai是通过数据的理性分析,得出结论;而人类则复杂得多,他综合了个人的主观判断与数据分析,理性与感性的权衡之下,方作出决定,故总是于情于理。然而两种方式皆无优劣之较,唯有其二者相互权衡综合,方能创造更美好的未来。

价值观,是人生态度的抽象概念。它代表了个人面对大千世界的自我思考与思考。倘若人失去了所谓“价值观”,便将成为一具毫无精神可言的躯体,仿佛行尸走肉般游走。“人是一株会思考的芦苇”。或许有人会反驳,ai也会思考,但它的所谓思考,不过是自己数据库中所载入的数据所分析出的结果,是由二进制所推动的程序运行,丝毫没有“个人”的情感,是冷冰冰的数据代码,更别提是否拥有价值观的体现了。

同情心,即为“恻隐之心”,可谓人皆有之。试问ai:当你面对奄奄一息的花木,你是否会亲手相植?面对瑟瑟发抖的小雀,你是否会以温柔相助?面对踉跄倒地的孩童,你是否会以怀抱相拥,面对病危的至亲,你是否会不顾一切地陪伴左右……即便你亲手一件件完成了诸事,亦不过是在执行人类所编写的代码罢了,你的心不会为之动跳,不会为之动容。试想,若人类失去了同情之心,世界又怎会温情脉脉?想至此,不禁毛骨悚然充斥着冷漠的世界,谈何“但愿人长久,千里共婵娟”,谈何“日日思君不见君,共饮长江水”,谈何“谁演寸草心,报得三春晖”,谈何“曾经沧海难为水,除却巫山不是云”?

“面对窗口调皮的小猫咪,你是否会莞尔?”我试问。人工智能表示,将来会有的而我,亦希望人类别丢了那份最本质的,欣赏美,体悟生活的态度。正如萧寒所言:

正是现实将我们推得快速甚至踉跄,让我们突然意识到,认真慢下来是多么的难能可贵。愿我们都能在自我的思考与体悟中享受人生百态,不向机器的方向靠拢,成为一个饱含激情与热血,拼搏进取的,人类。

愿人们不要丢弃了心中最纯粹的情感,那份价值观,那份同情心,正如库克所言,“我更担心人类像计算机一样思考,失去了价值观和同情心,罔顾后果。”

★其他类似内容

1测量学实习总结8篇

测量学实习总结8篇

测量学是地理信息科学中极为重要的一门课程,实习是学生在学习中提升实践能力的重要途径。本文将分享一位学生在测量学实习中的收...

查看剩余 70% 测量学实习总结8篇

2小班手指游戏教案8篇

小班手指游戏教案8篇

小班手指游戏教案是一种针对幼儿手部协调能力训练的教学方案。通过有趣的游戏形式,激发幼儿的兴趣,培养他们的观察力、注意力、...

查看剩余 81% 小班手指游戏教案8篇

3教师年度考核个人总结8篇

教师年度考核个人总结8篇

教师年度考核是衡量教师工作成果、评价教师绩效的一项重要工作。个人总结是教师年度考核的必要环节,通过总结反思自身的工作表现...

查看剩余 89% 教师年度考核个人总结8篇

4小班关于圣诞节的教案8篇

小班关于圣诞节的教案8篇

小班关于圣诞节的教案是一份针对3-4岁儿童制定的教学计划,旨在通过互动游戏和手工活动等形式引导幼儿认识圣诞节文化与习俗,提高...

查看剩余 79% 小班关于圣诞节的教案8篇

5暑假来了作文8篇

暑假来了作文8篇

暑假来了,让孩子们迎来了自由自在的假期。在这个美好的时间里,孩子们可以充分展现自我,收获成长与快乐。作文是锻炼孩子语言表...

查看剩余 75% 暑假来了作文8篇