数学学习计划锦集3篇("充实计划,精进数学:用这些锦囊实现高效数学学习")
这是一篇介绍数学学习计划的锦集,旨在为广大数学学习者提供对学习计划的有效指引和实用建议。从规划学习时间、设立学习目标、选择适合自己的学习资源、制定复习计划等多个角度,为大家提供更具针对性、更高效的数学学习路径。
第1篇
学生主要是以预习初一下学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常初一学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。
初一学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。
那到底该如何预习呢?预习的步骤有哪些呢?
一粗读,先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的基本框架,同时了解新课的重点和难点。
二细读,对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的`自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。
很多同学对概念和公式不够重视,这类问题反映在三个方面:
一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解 题联系起来。
三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
第2篇
第一阶段(3月下半月-5月上半月)最晚不能晚到5月底:60天左右,期中英语和数学是紧急重要的任务。
数学:每天4-6个小时,有基础的可以不看教材,直接看二李的全书(每天4小时);没有基础的.配合教材(每天2小时)看第一遍二李的全书(4小时)第一遍大部分看懂就可以,不懂的划记号。实在看不懂可以听xdf的课件,但是自己要把时间往上加。保证完成:三月线代;四月微积分;五月上概率。「数学每天不少于4个小时」
1、6.1之前每天一套真题(留05、06年出来),尽量自己做,不会可以查书,但是不能看答案。
第三阶段(7月1日-8月31日):60天左右,参考第二阶段。
英语重点是真题,然后听xdf的讲解数学:李永乐的复习全书第二遍做到每一道题都搞清楚做后面的练习。30天微积分15天线性代数;15天概率。「数学每天3-4个小时」
2、 做完真题后用一本硬皮本复习整理前面的数学公式、方法、技巧、例题(并背记)「紧急重要」「数学每天3-4个小时」
2、 真题第3遍(1天1套10天),力求做到没有难题,每一道都轻易搞定
4、 400题10套(-天一套)第二遍5、 总结的小本子背记(全程)
第五阶段(12月):30天(模拟和查漏补缺,不能有害怕的项目)「重点背西经和政治」
1、 李永乐的超越135,针对上个阶段做题情况查漏补缺,并对难点专项突破。
第六阶段(1月到2月3):32天,主要是背记「重点背政治」
数学:隔天一套题目熟手。主要是400题和真题保证140.背记总结的东西。
第3篇
寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(rolle)定理、拉格朗日(lagrange)中值定理和柯西(cauchy)中值定理.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
复习高数书上册第四章 第1-3节。需达到以下目标:
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+c],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
1建筑企业年度培训方案3篇
建筑企业年度培训方案是提高企业业务水平和员工职业素养的重要途径,也是建立企业发展战略的有效手段。通过周密计划和有针对性的...
查看剩余 83% 建筑企业年度培训方案3篇
2店长月工作总结3篇
“店长月工作总结”是一个反映店长过去一个月工作情况的重要文件。此文涵盖了店长在销售、管理、客户服务等方面的工作内容以及相...
查看剩余 85% 店长月工作总结3篇
3教师年终总结范文3篇
教师年终总结是每年教师工作的重要部分,特别是对于新教师来说更加关键。一份合适的年终总结可以帮助教师反思过去一年的工作,并...
查看剩余 89% 教师年终总结范文3篇
4软件维护合同3篇
本文介绍软件维护合同的基本概念,包括定义、作用、内容和要求等方面。软件维护合同是一种约定,旨在确保软件的安全、稳定和正常...
查看剩余 86% 软件维护合同3篇
5放射科应急预案3篇
该应急预案旨在通过规范化和标准化的方式,指导医院放射科在应对突发事件和意外事故时的应急措施。该预案包含了应急救援、病人疏...
查看剩余 74% 放射科应急预案3篇