小升初数学:应用题综合训练小升初数学基础应用题5篇(小升初数学应用题全方位训练)
本篇文章为小学生备战小升初数学应用题提供了综合训练,让孩子在解题过程中更好地理解数学知识,掌握解题方法,提高解题能力。此外,文章还为家长提供了对孩子进行数学辅导的参考,帮助孩子更好地应对小升初数学考试。
第1篇
1.甲、乙两人以均匀的速度绕圆形跑道按相反的方向跑步,他们的出发点分别在直径的两个端点,如果他们同时出发,那么在乙跑完100米时第一次相遇,甲跑一圈还差60米时,第二次相遇.跑道的长是几米?
解:第二次甲跑一圈还差60米,说明第一次相遇时,甲行了1/3还少60÷3=20米。跑道长(100-20)÷(1/2-1/3)=480米
2.甲、乙两个圆柱形容器,底面积比为4:3,甲容器水深7厘米,乙容器水深3厘米.再往两个容器各注入同样多的水,直到水深相等,这时水深几厘米?
解:由于甲乙底面积之比是4:3,要使水深相等,那么注入甲乙相同体积的水的深度的比是3:4。所以,甲容器要注入(7-3)÷(4-3)×3=12厘米深的水。
3.有一辆沿公路不停地往返于m,n两地之间的汽车.老王从m地沿这条公路步行向n地,速度为每小时3.6千米,中途迎面遇到从n地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回.n,m两地的路程有多少千米?
4.用甲、乙、丙三个排水管排水,甲管排出1立方米水的时间,乙管能排出1.25立方米的水,丙管能排出1.5立方米的水.现在要排完某个水池的水,先开甲管,2小时后开乙管,几小时后再开丙管,到下午4时正好把水排完,且各个排水管排出的水量正好相等.问什么时候打开的丙管?
要使排水量相等,甲管和乙管用的时间比是1.25:1=5:4,
乙管先开2小时,比甲管多排2×1.25=2.5立方米。所以甲管用了2.5÷(1.25-1)=10小时。甲管10小时放水量丙管需要10×1÷1.5=20/3小时,即6小时40分。
5.有一项工程,由三个工程队每天轮流做.原计划按甲、乙、丙次序轮做,恰好整天完工;如果按乙、丙、甲次序轮流做,比原计划多用0.5天;如果按丙、甲、乙次序轮流做,比原计划多用1/3天.已知甲单独做13天完工,且3个工程队的效率各不相同,那么这项工程由甲、乙、丙三个队合作要几天?
②乙丙甲;乙丙甲;……;乙丙甲;乙丙甲(1/2)甲(1/2)
③丙甲乙;丙甲乙;……;丙甲乙;丙甲乙(1/3)乙(2/3)
所以三个工程队合作的时间是13÷(1+1/2+3/4)=52/9天。
第2篇
1、甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在b地停留了7分钟,甲车则不停地驶往c地.最后乙车比甲车迟4分钟到c地.那么乙车出发后几分钟时,甲车就超过乙车.
2、乙、丙三人在a、b两块地植树,a地要植900棵,b地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树.两块地同时开始同时结束,乙应在开始后第几天从a地转到b地?
3、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
4、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
5、一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
6、有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
7、有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,a,b两池中注入的 水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?
8、甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
9、某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
10、甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
第3篇
商是(96-80)÷(120-119)=16,所以被除数是120×16+80=20xx。
2. 有四个不同的自然数,其中任意两个数之和是2的倍数,任意三个数的和是3的倍数,求满足条件的最小的四个自然数.
解:任意两个数之和是2的倍数,说明这些数全部是偶数或者全部是奇数。 任意三个数的和是3的倍数,说明这些数除以3的余数相同。
要满足条件的最小自然数,因为0是自然数了。所以我认为结果是0、6、12、18。
3. 在一环形跑道上,甲从a点,乙从b点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达b点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?
解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。 所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。
4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,
第4篇
1. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
2. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
如果这23个男生都是少先队员,那么女生少先队员就有35-23=12人,男生非少先队员就没有了,所以就多12人。
如果这23个男生都不是少先队员,那么女生少先队员就有35人,那么女生少先队员就比男生非少先队员多35-23=12人。
=(女生少先队员+男生少先队员)-(男生非少先队员+男生少先队员)
3. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
4. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
答:甲船的速度是18千米/小时,乙船的速度是12千米/小时.
5. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
一班少先队员人数比二班少先队员多的人数:75%x486x(90-48)=1(人)
那么少先队员人数就占两班总人数的5/6,即90×5/6=75人。
所以一班有少先队员4÷(5/6-75%)=48人,二班有90-48=42人。
6. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
第三次溢出的水是大球的体积+小球的体积-中球的体积
第三次是第二次的1.5倍,第二次是2;所以大球的体积为3-1+3=5
7. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
所有上坡用的时间和所有下坡用的时间比是4500:3000=3:2。
所以翻越这座山要走的路程就相当于所有的山坡路,即3000×2.7=8100米
解:上山的速度是3000米/小时,所以走每一米需要时间1/3000小时
下山的速度是4500米/小时,所以走每一米需要时间1/4500小时
相当于用3000米/小时和4500米/小时的速度和(2+2.5)小时走了 2个全程(一个全程上山和一个全程下山)
8. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
9. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
10. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
第5篇
148.甲、乙、丙三人同时从a向b跑.当甲跑到b时,乙离b还有15米,丙离b还有32米;当乙跑到b时,丙离b还有20米;当丙跑到b时,一共用了25秒,乙每秒跑多少米?
解:乙行15米,丙行32-20=12米。所以乙和丙的速度比是15:12=5:4
所以当乙行到b时,行了5份,丙行了4份,所以全程是20÷(5-4)×5=100米。
所以丙的速度是每秒100÷25=4米,乙的速度是每秒4÷4×5=5米
149.小明从家去体育馆看球赛.去时他步行5分钟后,跑步8分钟,到达体育馆.回来时,他先步行10分钟后,开始跑步,结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少?
所以步行10-5=5分钟的路程和跑步8-25/4=7/4分钟的路程相等。
150.有一批零件,甲、乙两种车床都可以加工.如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务.现在用甲、乙两车床一起加工,结果12天就完成了任务.如果只用甲车床单独加工需多少天完成任务?
解:在明月清风老师的指导下,终于知道了算法。关键是分数拆分。
12^2=144把144写成两数积的形式,其中一个数比另一个数大10。
151.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?
解:如果给乙的1/4加上420册,即给乙加上420*4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。
所以,甲书架有书:(3000+1680)*5/(5+8)=1800册;乙书架有书:3000-1800=1200册。
152.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?
另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5,
所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=4.8小时。
姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,
接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。
弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。
153.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?
解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。
1学校食堂采购部的年度工作总结范文5篇
该文主要介绍学校食堂采购部的年度工作总结范文,包括采购计划、供应商管理、采购流程等具体内容,为广大学校食堂工作人员提供经...
查看剩余 89% 学校食堂采购部的年度工作总结范文5篇
2房地产经理述职报告5篇
本文将从房地产经理的角度,详细阐述过去一年工作的收获和成就,同时总结经验教训,为今后的工作提供参考。为更好地推动公司的发...
查看剩余 72% 房地产经理述职报告5篇
3库管年终个人工作总结5篇
“库管年终个人工作总结”是由库房管理人员对一年来的工作进行回顾总结,包括任务完成情况、工作收获以及改进方案等内容,以期推...
查看剩余 90% 库管年终个人工作总结5篇
4中医护理年度工作总结5篇
本文主题为“中医护理年度工作总结”,围绕中医护理领域进行总结,展现了中医护理工作的拓展和进步。经过近一年的工作,中医护理...
查看剩余 85% 中医护理年度工作总结5篇
5理想演讲稿5篇
“理想演讲稿”是指一个演讲者在公众场合下,运用语言、逻辑、情感,传达自己的想法、见解、价值观的文稿。一篇优秀的理想演讲稿...
查看剩余 78% 理想演讲稿5篇