函数单调性教学设计共2篇(享受更高效的数学学习:如何设计一个引人入胜的函数单调性教学计划)

函数单调性是高中数学中的重要概念之一,也是考核学生基础数学功底的一道重要题目。如何能够让学生理解和掌握函数的单调性,是每个数学教师需要探求的教学难点。本文将分享一份函数单调性的教学设计,希望能够为广大数学教师提供一些启示。

函数单调性教学设计共2篇

第1篇

函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如函数单调增表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质.

函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.

函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法.这就是,加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.

函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位.

教学的重点是,引导学生对函数在区间(a,b)上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间(a,b)上任意取x1,x2,当x1<x2时,有 f(x2)>f(x1)(或f(x2)<f(x1)=,则称函数f(x)在区间(a,b)上单调增(或单调减).

本节课要求学生理解函数在某区间上单调的意义,掌握用函数单调性的定义证明简单函数在某区间上具有某种单调性的方法(步骤).

1.能够以具体的例子说明某函数在某区间上是增函数还是减函数;

2.能够举例,并通过绘制图形说明函数在定义域的子集(区间)上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质;

3.对于一个具体的函数,能够用单调性的定义,证明它是增函数还是减函数:在区间上任意取x1,x2,设x1<x2,作差f(x2)- f(x1),然后判断这个差的正、负,从而证明函数在该区间上是增函数还是减函数.

学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应.学生还了解函数有三种表示方法,特别是可以借助图象对函数特征加以直观考察.此外,还学习过一次函数、二次函数、反比例函数等几个简单而具体的函数,了解它们的图象及性质.尤其值得注意的是,学生有利用函数性质进行两个数大小比较的经验.

“图象是上升的,函数是单调增的;图象是下降的,函数是单调减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难.困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述.即把某区间上“随着x的增大,y也增大”(单调增)这一特征用该区间上“任意的x1<x2,有f(x1)<f(x2)”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的x1,x2.

教学中,通过二次函数这个具体函数的图象及数值变化特征的研究,得到“图象是上升的”,相应地,即“随着x的增大,y也增大”,初步提出单调增的说法.通过讨论、交流,让学生尝试,就一般情况进行刻画,提出“在某区间上,如果对于任意的x1<x2有f(x1)<f(x2)”则函数在该区间上具有“图象是上升的”、“随着x的增大,y也增大”的特征.进一步给出函数单调性的定义.然后通过辨析、练习等帮助学生理解这一概念.

企图在一节课中完成学生对函数单调性的真正理解可能是不现实的.在今后,学生通过判断函数的单调性,寻找函数的单调区间,运用函数的单调性解决具体问题,等一系列学习活动可以逐步理解这个概念.

为了有效实现教学目标,条件许可,可以借助计算机或者计算器绘制函数图象,同时辅以坐标计算、跟踪点以及等手段观察函数的数字变化特征.

函数是描述事物运动变化规律的数学模型.如果了解了函数的变化规律,那么也就掌握了相应事物的变化规律,因此研究函数的性质十分必要.在事物变化过程,保持不变的特征就是这个事物的性质.

问题1 观察图1中各个函数的图象,你能说说它们分别反映了相应函数的哪些变化规律吗?

图1 设计意图:从形到数,借助对函数图象的观察,想象相应的函数的性质.引导单调函数的“直观定义”.

可能的回答是,第一个图中的函数图象,自左而右是上升的;第二个图中的函数图象,自左而右,有时是上升的有时是下降的;第三个图中的函数图象,自左而右也是有时上升有时下降的,而且是关于y轴对称的.

师:对于运动变化问题,最基本的就是描述变化的快与慢、增与减??相应的,函数的特征就包含:函数的增与减,我们把函数的这种性质称为“单调性”.

教师结合上述直观认识,写出课题:函数的单调性.

结合上述直观认识,给出单调函数的“直观定义”:

设函数的定义域为i,区间di.在区间d上,若函数的图像(从左至右看)总是上升的,则称函数在区间d上是增函数,区间d称为函数的单调增区间;在区间d上,若函数的图像(从左至右看)总是下降的,则称函数在区间d上是减函数,区间d称为函数的单调减区间.

例1 (教科书第29页例1)图2是定义在区间[-5,5]上的函数y=f(x)的图象,根据函数图象说出函数的单调区间,以及在每一个单调区间上,它是增函数还是减函数?

设计意图:用“直观定义”判断单调性,并强调单调性的“局部性”.

仅从图象上观察出函数的性质,只是得到了“定性刻画”,对函数的变化情况只是“大致了解”,显然不够,我们希望“量化”,这样才能准确.

教师借助几何画板作出函数y=x2的图像,并在函数y=x2的图像上任画一点p,测量出其横坐标与纵坐标,制作表格.拖动点p,表格自动增行.

问题2 根据函数的定义,对于自变量x的每一个确定的值,变量y有唯一确定的值与它对应.那么,当一个函数在某一区间上是单调增(或单调减)的时候,相应的,自变量的值与对应的函数值的变化规律是怎样的呢?

设计意图:对函数的单调性的刻画,从图形的刻画过渡到数量关系,即从图形语言的表述过渡到自然语言的表述.

由上面的表格可见,点p的纵坐标(即函数值)y的变化规律:在区间(-∞,0上,随着自变量x增大,函数值y减少;在区间0,+∞)上,随着自变量x增大,函数值y也增大.

设函数的定义域为i,区间di.在区间d上,若随着自变量x增大,函数值y也增大,则称函数在区间d上是增函数;在区间d上,若随着自变量x增大,函数值y反而减小,则称函数在区间d上是减函数.

虽然完成了对函数单调性的从图形语言表述到自然语言的表述,但这样的描述还不是“量化”的,所以,要把定性的数量变化关系转化为定量的数量变化关系.这是本课的重点,也是难点所在.

从上面的结论,可以看到,函数在区间d上是增函数,那么随着自变量x增大,函数值y也增大.

问题3 如果对于区间(a,b)上的任意x有f(x)>f(a),则函数f(x)在区间(a,b)上单调增.这个说法对吗?请你说明理由(举例或者画图).

设计意图:继续企图通过对描述性定义的辨析,逐渐引出定量定义.必须是两个变化的量的比较.

问题4 函数f(x)在区间(a,b)上有无数个自变量x,使得当a<x1<x2<?<?<b时,有f(a)<f(x1)<f(x2)<?<?f(b),能不能说明它在(a,b)单调增?请你说明理由(举例或者画图).

设计意图:本问题较为贴近描述性定义,但这是对描述性定义的误解.通过对函数描述性定义的辨析,逐渐使得同学们认识到要使函数f(x)在区间(a,b)上具有单调增的特征,必须允许自变量x 在区间(a,b)上“任意取”,且只要“取两个”就够了.也给学生使用符号说明单调性以示范或提示.

从上面的讨论可以看到,函数f(x)在区间(a,b)对任意x有f(x)>f(a),也不能说明它在(a,b)单调增;在区间(a,b)上有无数个自变量x,使得当a<x1<x2<?<?<b时,有f(a)<f(x1)<f(x2)<?<?f(b)也不能说明它在(a,b)单调增.那么自变量x在区间(a,b)上到底该怎样取值好呢?我们再来看一看具体的函数f(x)=x2.

教师利用几何画板演示:在函数f(x)=x2的图象上,位于区间0,+∞)任选两个点,自变量大的函数值也一定大.并提出

问题5 在函数f(x)=x2,x∈0,+∞)的图象上任意取两点,自变量大的函数值也一定大,能否说明函数f(x)=x2在0,+∞)上单调增?

设计意图:由问题4可见,刻画函数单调性不在于所取自变量个数的多少,关键在于是否能够任意取值,而且必须任意取两个.

这个问题的答案是显然的.教师立即提出“怎样用符号来表示?”的问题.引导学生获得“只要任意x1<x2,有f(x1)<f(x2)”即可.

一般地,设函数f(x)的定义域为i.如果对于定义域i内的某个区间d上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间d上是增函数;对于定义域i内的某个区间d上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间d上是减函数.

练习1 画出反比例函数f(x)=的图象,并回答下列问题:

(2)是否可以说“这个函数在定义域i上是单调减?”为什么?

设计意图:通过具体问题,使学生认识函数的单调性是函数在定义域的某个区间上的性质,是函数的局部性质(在整体上未必有).进一步认识“任意”二字的意义,加深对函数单调性的认识.

答:(1)函数f(x)=在区间(-∞,0)上单调减,在区间(0,+∞)上也单调减.(图象略).

(2)这个函数的定义域i=(-∞,0)∪(0,+∞).不能说“这个函数在定义域i上是单调减”.事实上,取x1=-1,x2=1,而f(-1)=-1,f(1)=1,f(-1)<f(1).

练习2 物理学中的波利尔定律p=(k是正常数)告诉我们,对于一定量的气体,当体积v减小,压强p将增大.试用函数的单调性证明之.(教科书第29页例2)

设计意图:函数单调性概念的应用.逐步掌握利用单调性定义证明一个函数在某区间上具有某种单调性的步骤.加深对函数单调性的理解.

分析 怎样来证明“体积v减小,压强p将增大”呢,根据函数单调性的定义,只要证明函数p=(k是正常数)是减函数.怎样证明函数p=(k是正常数)是减函数呢,只要在区间(0,+∞)(因为体积v>0)任意取两个大小不相等的值,证明较小的值对应的函数值较大,即

这节课,我们学习了“函数的单调性”,“如果函数在区间(a,b)单调减,那么这个函数有什么特征?”

设计意图:企图明确,f(x)在区间d上是减函数 f(x)的图像在区间d上是下降的在区间d上自变量增大函数值减小.类似地,f(x)在区间d上是增函数 f(x)的图像在区间d上是上升的在区间d上自变量增大函数值也增大.

教师总结研究问题的过程(突出思想方法)——“图形直观——定性刻画——定量刻画”,最后用不等式,即“大小比较”的方法刻画一种变化规律,描述一个变化过程.

函数单调性教学设计共3篇

第2篇

函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.

(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; (2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达. 学法分析:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.

函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.

(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:

问题1:说出气温在哪些时段内是逐步升高的或下降的?

问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征? [设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.

[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1?8时,这一情形进行描述.引导学生回答:对于自变量8问题3:对于任意的t

1、t2∈[4,16]时,当t1?t2时,是否都有f(t1)?f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.

[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1?x2时,都有f(x1)?f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

问题4: 类比单调增函数概念,你能给出单调减函数的概念吗? 最后完成单调性和单调区间概念的整体表述.

[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.

1.为了理解函数单调性的概念,及时地进行运用是十分必要的. [教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明. [学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.

[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.

[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.

2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢? [教师活动]问题6:证明f(x)?1在区间(0,+ ∞)上是单调减函数. x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.

[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.

[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断. [设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

1、定义在r上的单调函数f(x)满足f(2)?f(1),那么函数f(x)是r上的单调增函数还是单调减函数?

2、若定义在r上的单调减函数f(x)满足f(1?a)?f(3?a),你能确定实数的取值范围吗?

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:

选做:二次函数y?x2?bx?c在[0,+∞)是增函数,满足条件的实数b的值唯一吗? 探究:函数y?x在定义域内是增函数,函数y?1有两个单调减区间,由这两个基本函x数构成的函数y?x?1的单调性如何?请证明你得到的结论. x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.

★其他类似内容

1放射科的年终总结2篇

放射科的年终总结2篇

年终总结是每个行业都需要进行的一个重要环节,放射科也不例外。在过去的一年中,放射科医生们在工作中付出了很多努力。他们承担...

查看剩余 90% 放射科的年终总结2篇

2酒店客房部领班月工作总结2篇

酒店客房部领班月工作总结2篇

本文主题为酒店客房部领班月工作总结。酒店客房部领班是为客人提供优质住房体验的重要岗位之一,其工作内容涵盖客房清洁、房态管...

查看剩余 88% 酒店客房部领班月工作总结2篇

3《静夜思》教案范文锦集2篇

《静夜思》教案范文锦集2篇

《静夜思》是唐代诗人李白的代表作之一,它以简洁明了的语言和婉转优美的词句,描绘出夜晚的宁静与宁肃。针对该诗的教学,很多老...

查看剩余 78% 《静夜思》教案范文锦集2篇

4农业技术员个人工作总结2篇

农业技术员个人工作总结2篇

本文主要是一位农业技术员对自己一年来的工作经验与收获的总结。她在实践中不断探索,吸取前人经验,并不断学习新知识与新技能...

查看剩余 81% 农业技术员个人工作总结2篇

5工厂实习总结3篇

工厂实习总结3篇

这是一篇关于工厂实习总结的文章,通过实习中的经历和反思,分享关于工作、团队协作以及个人成长的体验与感悟。...

查看剩余 85% 工厂实习总结3篇