一元二次函数教案模板共二元一次函数教学2篇(“从一元二次函数到二元一次函数:打通数学知识链条的高效教学模板”)
本文提供一元二次函数教案模板和共二元一次函数教学指导,旨在帮助教师更好地教授这两个数学知识点。教案模板包括课堂目标、教学内容、学情分析、教学方法等,有效提高教学效率;同时,共二元一次函数教学指导结合实例分析常见问题,帮助学生掌握关键概念和解题技巧。
第1篇
二次函数与一元二次方程教案1 二次函数与一元二次方程
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.
[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.
(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.
(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;
二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.
由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.
二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?
1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.
2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.
把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?
第2篇
体会二次函数与一元二次方程之间的联系;理解二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系;理解一元二次方程的根就是二次函数图象与x轴交点的横坐标. 教学重点: 二次函数的图象与x轴交点的个数与一元二次方程的根的关系. 教学难点: 理解二次函数图象与x轴的位置关系与一元二次方程的根的情况之间的关系. 【教学过程】
一个小球从地面以一定的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)
2之间的关系为二次函数h=-5t+40t,其函数图象如图(图略)所示. 试问:小球经过多少秒后落地?与同伴进行交流.(揭示课题: 二次函数与一元二次方程) 二、活动探索,研究问题 1.师生探究 (1)观察:二次函数y=x2-2x-3的图象与x轴有几个交点?你能说出交点的坐标吗?
(2)思考:利用交点的坐标你能说出x取何值时,y=0吗? (3)探究:你能说出一元二次方程 x 2-2x -3=0的根吗? 2.自主探究
类似的,你能利用二次函数y=x2-6x+9的图象研究一元二次方程x2-6x+9=0的根的情况吗?一元二次方程x2-2x+3=0呢? 3.归纳总结
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 4.例题示范
在本节一开始的小球上抛问题中, 提出新的问题: (1)当t=7秒时,小球距地面的高度是多少? (2)方程 -5t2+40t=75的根的实际意义是什么? (3)何时小球离地面的高度是60m? 五、回顾小结,强化认知
1放射科的年终总结2篇
年终总结是每个行业都需要进行的一个重要环节,放射科也不例外。在过去的一年中,放射科医生们在工作中付出了很多努力。他们承担...
查看剩余 90% 放射科的年终总结2篇
2酒店客房部领班月工作总结2篇
本文主题为酒店客房部领班月工作总结。酒店客房部领班是为客人提供优质住房体验的重要岗位之一,其工作内容涵盖客房清洁、房态管...
查看剩余 81% 酒店客房部领班月工作总结2篇
3农业技术员个人工作总结2篇
本文主要是一位农业技术员对自己一年来的工作经验与收获的总结。她在实践中不断探索,吸取前人经验,并不断学习新知识与新技能...
查看剩余 81% 农业技术员个人工作总结2篇
4中班下教案7篇
本篇文章介绍了中班下教案的相关内容,包括教学目标、教学重点、教学步骤等。这些教案将帮助中班教师们更好地教学,提高幼儿的...
查看剩余 79% 中班下教案7篇
5大班教案集锦5篇
《大班教案集锦》是一份为大班幼儿教师量身定制的教案材料集,内容覆盖语言、数学、美术等多个学科,旨在帮助教师轻松备课,提高...
查看剩余 71% 大班教案集锦5篇