《有理数的加法》教案7篇(「数学加法不止有算法,更让你了解有理数的奥秘!」——有理数加法教案)

本文介绍了一份名为“《有理数的加法》教案”的教学指导文件,针对初中数学有理数的加法进行了详细阐述,从概念定义到实例演示,让教师能够更好地指导学生掌握有理数的加法知识。

《有理数的加法》教案7篇

第1篇

1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。

重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加

1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想

2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。

,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米

小亮从o点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点o出发向_____走了_______千米,用式子表示为_______________.

从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。

同号两数相加,取__________的`符号,并把它们的_____________相加。

(1)小明先从点o出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点o出发向___走了____千米,用式子表示为_________________________.

(2)小李先从点o出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点o出发,向___走了

从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。

异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值

(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?

(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?

互为相反数的两个相加得_______,一个数和零相加,任得____________________.

《有理数的加法》教案8篇

第2篇

2,经历探索有理数加法法则的过程,理解有理数的加法法则。

3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

(出示课题)让学生感受到在实际问题中做加法运算的.数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

探究新知如果是球队在某场比赛中上半场失了两个球,下

半场失了3个球,那么它的得胜球是几个呢?算式应该

怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

能出现其他的什么情况?你能列出算式吗?与同伴交流。

学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

(4)在学生归纳的基础上,教师出示有理数加法法则。

1,同号两数相加,取相同的符号,并把绝对值相加。

2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

第3篇

1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

教学难点:准确、熟练地进行加减混合运算

1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

根据有理数减法法则,有理数的加减混合运算可以统一为加法运算

例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)

算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的`和。

解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]

例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从a地到b地结束时行走记录为(单位:km)

+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)b地在a地何方,相距多少千米?

1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

第4篇

(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?

(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?

(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?

(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?

如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?

(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?

1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?

2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?

1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

(3)标准重量是,超过标准重量;(4)第一天盈利-300元,第二天盈利100元.

(2)上午8时的气温是,下午5时的.气温比上午8时下降,下午5时的气温是多少?

3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?

第5篇

本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的`知识,又可以引出新课。

在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

第6篇

(1)经历探索有理数加法运算律的.过程,理解有理数的加法运算律。

(2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力

(1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。

(2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。

一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。

(2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______

(2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________

第7篇

2.经历探索有理数加法法则的过程,理解有理数加法法则;

1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得.

1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃, 下午5时的气温是多少?

2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?

3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?

1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.

例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.

又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.

有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算.他说的对不对?

1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?

2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的'结果是什么?

3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.

★其他类似内容

1小班游戏教案猫和老鼠3篇

小班游戏教案猫和老鼠3篇

小班游戏教案猫和老鼠,是幼儿园教育中常见的课程之一。通过这个游戏,幼儿能够学会团队合作、竞争意识,并培养自我保护的意识。...

查看剩余 79% 小班游戏教案猫和老鼠3篇

2小班手指游戏教案8篇

小班手指游戏教案8篇

小班手指游戏教案是一种针对幼儿手部协调能力训练的教学方案。通过有趣的游戏形式,激发幼儿的兴趣,培养他们的观察力、注意力、...

查看剩余 75% 小班手指游戏教案8篇

3幼儿园教案范文汇总3篇

幼儿园教案范文汇总3篇

本文汇集了多篇幼儿园教案范文,包括语言、数学、科学、艺术等多个方面,涵盖了幼儿园各年龄段的教学内容。这些范文旨在为广大老...

查看剩余 71% 幼儿园教案范文汇总3篇

4大班语言活动教案汇总2篇

大班语言活动教案汇总2篇

本文为大班语言活动教案的汇总,旨在为幼师们提供丰富的语言活动教案,帮助他们提高幼儿语言表达和沟通能力,培养良好的语言习惯...

查看剩余 78% 大班语言活动教案汇总2篇

5玩得真开心教案3篇

玩得真开心教案3篇

本文将分享一份名为“玩得真开心”的教案,旨在通过寓教于乐的游戏体验使学生在轻松愉悦的氛围下获得知识。该教案独具创意,将游...

查看剩余 77% 玩得真开心教案3篇