四年级下册数学第四单元教案8篇("探究数字的奥秘:四年级数学第四单元教案")

本篇教案是围绕着四年级下册数学第四单元展开的,通过梳理本单元的知识点和教学目标,结合实际教学情况,精心设计出一整套科学、系统的教学方案,旨在帮助孩子掌握数学基础知识,提升数学思维能力,为他们未来的学习生活打下坚实的数学基础。

四年级下册数学第四单元教案8篇

第1篇

人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

在学生初步认识分数和小数的基础上,进一步理解小数的意义。

理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

出示课件:同学们请看,老师把之前分得的`1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

点击出示发现!你们个个都是自学小能手!老师为你们点赞!

谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

(过渡)学习的过程就是不断地克服困难,战胜自我的过程。

师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

四年级下册数学第四单元教案8篇

第2篇

1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

3、培养学生的迁移、类推能力,以及良好的数学学习品质。

理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

师:那我们就可以说一位小数表示的就是十分之几。(板书)

(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

5.师:(指板书)刚才我们研究的.小数都有什么特点?他们都表示什么?

生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

第3篇

1.掌握小数的性质,会应用小数的性质化简改写小数。

师:这几个数熟悉吗?(熟悉),今天就让我们用100分的热情,10分的认真,上1节快乐的数学课。你们能做到吗?(能)。上课

首先,李老师想请你们来当小裁判,有两位同学发生了这样一件事:(看大屏幕)

我们学数学要有理有据,那么,你们的猜想0.3=0.30,对不对,还需要你们进行验证。

你们用常用的长度单位来验证再一次证明了0.3=0.30,还有其他的方法吗?

生:在小数的末尾添上“0”或去掉“0”,小数的大小不变。

师:这句话中,你认为哪个词是关键词,“末尾”。为什么?

3.合作结论:小数的末尾添上“0”或去掉“0”,小数的大小不变。(再读一遍)

第一关:下面各数末尾添上“0”后,发生了哪些变化?同桌之间互相说一说。说说你发现了什么?

第二关:下面的数如果末尾添上“0”,哪些数的大小不变?哪些数的大小会变?

1、12.8和12.80的大小一样,但计数单位不一样。()。

2、在小数上添“0”或去掉“0”,小数的大小不变。()

第五关:不改变数的大小,把下面各数写成三位小数。

小数末尾添上“0”或者去掉“0”,小数的大小不变。

第4篇

2、师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)

1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。

教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。

教学难点:用“四舍五入”法按要求求出小数近似数。

这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

(1)学生在书上填写,集体订正。说一说这些小数的意义。

问:一位小数、两位小数、三位小数……各表示几分之几的数?

2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

四、复习小数点位置移动引起小数大小变化的规律

(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

学生在练习本上做,指名板演,说一说怎样把一个较大数改写

3、把下面各数改写成“万”作单位的数,并保留一位小数。

(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

(3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

(5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(

)万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

第5篇

1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

重点:体会十进制分数与小数的关系,初步理解小数的意义。

1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

学生依次读出:零点一、一点一一、九点五、五点九六。

2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

d.思考:我们选用的图都不一样,为什么都可以表示0.1?

学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。

师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。

生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

小数我们写的完吗?其实呀,小数的位数越多就分的越细。

大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

教师:通过刚才游戏,你们发现了什么?(出示课件)

师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

第6篇

生来公平,拿在手中,要问长短,它最分明。打一度量器具。

师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!

咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!

首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--

课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!

师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子

师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。

师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。

教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。

在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。

这节课就让我深入研究一下小数的意义。(板书课题)齐读课题。

设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。

师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。

师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书

师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的很好孩子,板书

师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书

师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。

师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。

师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?

生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。

师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的分数。

设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。

师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?

师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,

找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01

师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的想法?小数可以写为?说说你的想法孩子,说的不错!

6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?

师:这组分数的共同特点是怎样的?这些小数又有什么共同点吗?

生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。

设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。

同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)

师:孩子,那这样的12份呢?师板书。123份呢?师板书。

师:说的非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

师:请同学们想一想四位小数表示什么?五位小数呢?

生:四位小数表示万分之几,五位小数表示十万分之几。

师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?

生1,:我认为分母是10,100,1000等的'分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......

设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。

如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!

孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;

师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。

师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。

师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,

师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。

以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?

那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.

学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。

1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。

同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?

同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!

第7篇

教学内容:人教版数学第八册第四单元“小数的性质”

1、初步理解小数的基本性质,并应用性质化简和改写小数。

2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

1、师:今天老师给同学们准备了一个小魔术,我们来看看。

老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。

看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)

师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。

2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?

这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?

在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。

你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。

请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?

小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

学生涂完色问:你为什么这样涂?之后演示涂色过程。

问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?

理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。

这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。

教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?

教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)

讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。

你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)

(1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。

(2)小数点的后面添上“0”或去掉“0”,小数的大小不变。

(3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。

强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.

(2)学生自己完成。指名回答,让其说说这样做的.根据是什么?

(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)

(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?

强调:12去掉0后,小数部分没有数,可以把小数点也去掉。

过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数

不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

(2)大家这样做的根据是什么?3能不能直接在后面添0?

(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?

如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)

第8篇

这部分内容教学三位数乘两位数笔算的基本方法。这是在学生掌握了三位数乘一位数、两位数乘两位数笔算方法的基础上安排的。学生学习这部分知识可以完善和提升整数乘法的笔算能力,为以后进一步学习乘法计算伐好基础。

1、知识目标:使学生经历探索三位数乘两位数笔算方法的过程,掌握三位数乘两位数的基本笔算方法,能正确进行计算。

2、能力目标:使学生在探索计算方法的过程中体会新旧知识的联系,能主动总结、归纳三位数乘两位数的笔算放大,培养类比以及分析、概括的能力。

3、情感目标:使学生在主动参与学习活动的过程中,进一步体验学习成功带来的快乐,激发探索计算方法、解决计算问题的兴趣。

使学生经历探索三位数乘两位数笔算方法的过程,掌握三位数乘两位数的基本笔算方法,能正确进行计算。

学生自己出一道两位数乘两位数的题目,并笔算。算完后互相检查。

指名一人板演,看板书,说说两位数乘两位数的'笔算方法(主要说清楚分别要用第2个乘数的个位、十位上的数去乘)。

1、学生自主探索:每人在本子上自己算一算,算完后和同桌交换算法,说说自己怎么算的?有问题么?

2、找几个学生的做法板演,分别说说各题错在哪里?正确的该怎么算?

[课堂中出现的问题:(1)直接一次乘。指出:乘数是两位的,要分两次乘。

(2)分别用第一个乘数三个数位上的数去乘,乘了三次。指出:一般用第二个乘数分别去乘]另外再指出:个位乘得的积末尾和个位对齐,十位乘得的积和十位对齐。

总结:(1)用两位数的个位和十位上的数依次分别去乘三位数;(2)用两位数哪一位上的数去乘,乘得的数的末位就和那一位对齐;(3)把两次乘得的数加起来。

三位数乘两位数计算中很容易出错,除了上面说的错,还有哪些呢?一起看第2题:说说错在哪里?怎么改正?

特别要注意三位数中间有0时,不能漏乘;还要注意不能忘记每次计算时的进位。

让学生在作业本上写出竖式进行笔算,算完后指名说说得数。

指出:用竖式计算类似的题目时,通过交换两个乘数的位置能使笔算方便一些。

提问:要求算出每种水果各卖了多少元,就是要算出总价,总价是怎样计算的?(板书:数量×单价=总价)

★其他类似内容

1小班美术教案范文锦集4篇

小班美术教案范文锦集4篇

本篇文章为大家带来了小班美术教案范文的精选,包含了许多优秀的教案示范,旨在帮助教师更好地掌握小班美术教学方法与技巧,提升...

查看剩余 74% 小班美术教案范文锦集4篇

2手指点画教案7篇

手指点画教案7篇

“手指点画教案”是一种创新教学方法,在幼儿教育中得到广泛应用。这种教学方法通过手指点画、模仿画法等方式,让幼儿通过触摸...

查看剩余 82% 手指点画教案7篇

3幼儿园教案范文汇总4篇

幼儿园教案范文汇总4篇

本文汇总了多篇幼儿园教案范文,为幼教工作者提供了有益的借鉴和参考。这些教案内容详尽,方案实用,涵盖了多个年龄段的幼儿教学...

查看剩余 90% 幼儿园教案范文汇总4篇

4小班心理健康活动教案集锦7篇

小班心理健康活动教案集锦7篇

本文是关于小班心理健康活动教案的集锦,详细介绍了小班儿童心理健康活动的重要性及实践方法。借助教案集锦,提高师生心理健康水...

查看剩余 71% 小班心理健康活动教案集锦7篇

5幼儿园小班教案范文集锦2篇

幼儿园小班教案范文集锦2篇

本文为幼儿园小班教案范文集锦,旨在为小班老师提供优秀的教学案例参考。通过案例分享,展示不同主题、不同教学策略与方法的教案...

查看剩余 78% 幼儿园小班教案范文集锦2篇