《有理数的乘法》教案7篇(《探究有理数的乘法》——一堂启发性的数学课)

本教案将有理数的乘法概念、性质和计算方法进行详细讲解和练习,帮助学生系统掌握其基本知识和技能。同时,根据学生不同的认知特点和学习需求,教案设计了多样化的教学策略,以促进学生的深入理解和主动学习,提高教学效果。

《有理数的乘法》教案7篇

第1篇

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

我们知道计算有理数的'乘法,关键是确定积的符号。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

《有理数的乘法》教案8篇

第2篇

①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.

通过对问题的变式探索,培养观察、分析、抽象的能力.

通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.

做一做 出示一组算式,请同学们用计算器计算并找出它们的规律.

想一想 你们发现积的`符号与因数的符号之间的关系如何?

总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.

第3篇

使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

3、在一条由西向东的笔直的马路上,取一点o,以向东的路程为正,则向西的路程为负,如果小玫从点o出发,以5千米的向西行走,那么经过3小时,她走了多远?

2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

3、学生活动:计算3×(-5)+3×5,注意运用简便运算

3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。

(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

第4篇

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

把一个因数换成它的相反数,所得的积是原来的积的相反数.

这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的`积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中中特别注意“负负得正”和“异号得负”.

用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.

因此,在进行有理数乘法时,需要时时强调:先定符号后定值.

这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.

3.当a,b是下列各数值时,填写空格中计算的积与和:

今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.

道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.

第5篇

3. 了解互为倒数的意义,并会求一个非零有理数的倒数

1、复习有理数的乘法法则(两个因数、两个以上的因数),并举例说明。

2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?

3、请再举几组数试一试,看上面所得的结论是否成立?

观察例2中的三个运算, 两个因数有什么 特点?它们的乘积呢?你能够得到什么结论?

第6篇

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

(引例)一只小虫沿一条东西向的`跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

当然,当其中的一个因数为0时,所得的积还是等于0。

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

第7篇

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

①符号:在上述4个式子中,我们只看符号,有什么规律?

(1)教师按课本p75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的.积为 。

(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

★其他类似内容

1小班游戏教案猫和老鼠3篇

小班游戏教案猫和老鼠3篇

小班游戏教案猫和老鼠,是幼儿园教育中常见的课程之一。通过这个游戏,幼儿能够学会团队合作、竞争意识,并培养自我保护的意识。...

查看剩余 83% 小班游戏教案猫和老鼠3篇

2小班手指游戏教案8篇

小班手指游戏教案8篇

小班手指游戏教案是一种针对幼儿手部协调能力训练的教学方案。通过有趣的游戏形式,激发幼儿的兴趣,培养他们的观察力、注意力、...

查看剩余 70% 小班手指游戏教案8篇

3幼儿园教案范文汇总3篇

幼儿园教案范文汇总3篇

本文汇集了多篇幼儿园教案范文,包括语言、数学、科学、艺术等多个方面,涵盖了幼儿园各年龄段的教学内容。这些范文旨在为广大老...

查看剩余 81% 幼儿园教案范文汇总3篇

4大班语言活动教案汇总2篇

大班语言活动教案汇总2篇

本文为大班语言活动教案的汇总,旨在为幼师们提供丰富的语言活动教案,帮助他们提高幼儿语言表达和沟通能力,培养良好的语言习惯...

查看剩余 84% 大班语言活动教案汇总2篇

5玩得真开心教案3篇

玩得真开心教案3篇

本文将分享一份名为“玩得真开心”的教案,旨在通过寓教于乐的游戏体验使学生在轻松愉悦的氛围下获得知识。该教案独具创意,将游...

查看剩余 84% 玩得真开心教案3篇