函数单调性教学设计共3篇(同构建函数单调性的教学之旅)

本文将分享一份针对函数单调性教学设计的共享资源,旨在帮助教师更好地呈现函数单调性的概念。本资源包括用于引入、演示和练习单调性的教学活动和示例,可供教师灵活运用。

函数单调性教学设计共3篇

第1篇

?函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。 【教学目标】

1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。 2.学会应用函数的图象理解和研究函数的单调性及其几何意义。 过程与方法:

1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。 2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。 情感与态度:

1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。 【重点难点】

重点:函数单调性概念的理解及应用。 难点:函数单调性的判定及证明。 关键:增函数与减函数的概念的理解。 【教法分析】

1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。 3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。 【学法分析】

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。 【教学过程设计】

设计意图:用天气的变化,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。

观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的? 例如:初中研究y?x2时,我们知道,当x0时,函数值y随x的增大而增大。

图象呈逐渐上升趋势?数值y随x的增大而增大;图象呈逐渐下降趋势?数值y随x的增大而减小。

设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。

问题3:如何用符号化的数学语言来准确地表述函数的单调性呢?

对于区间i内的任意两个值x1,x2,当x1?x2时,都有f(x1)?f(x2)。

问题4:如何定义单调减函数呢? 可以通过类比的方法由学生给出。

设计意图:通过师生双边活动及学生讨论,可以让学生充分参与用严格的数学符号语言定义函数单调性的全过程,让他们亲身体验数学概念如何从直观到抽象,从文字到符号,从粗疏到严密。让他们充分感悟数学概念符号化的建构原则。问题4则要求学生结合图象化单调增函数的定义,通过类比的方法,由学生自己得到单调减函数的概念,在这个过程中,学生可以体会数学概念是如何扩充完善的。

汉语大词典对“单调”的解释是:简单、重复而没有变化。 2.呼应引入,解决问题情境中的问题

如:y?2x?1的单调增区间是(??,??);y?3.单调性是函数的“局部”性质 如:函数y?上减函数?

引导学生讨论,从图象上观察或用特殊值代入验证否定结论(如取x1??1,x2?

1在(0,??)上是减函数。 x11在(0,??)和(??,0)上都是减函数,能否说y?在定义域(??,0)(0,??)上xx1)。

2设计意图:学生对一个概念的认识不可能一次完成,教师要善于从多个角度,通过概念变式教学和构造反例帮助学生理解概念的内涵与外延。在学习如何证明一个函数的单调性之前,先与学生

3 一起探讨怎样才能否定一个函数的单调性对帮助学生理解函数单调性的概念尤为重要,可以加深学生对“任意”两字的理解。

通过两例,教师要向学生说明: 1.判断函数单调性的主要方法:①观察法:画出函数图象来观察;②定义法:严格按照定义进行验证;③分解法:对函数进行恰当的变形,使之变成我们所熟悉的且已知其单调性的较简单函数的组合。

2.概括出证明函数单调性的一般步骤:取值→作差→变形→定号。 练习:作出函数y?|x?1|?

设计意图:单调性证明是学生在函数内容中首次接触到的代数论证问题,通过本例,要让学生理解判断函数单调性与证明函数单调性的差别,掌握证明函数单调性的程序,并深入理解什么是代数证明,代数证明要做什么事。

本节课主要学习了函数单调性的定义,单调区间的概念,能利用(1)图象法;(2)定义法来判定函数的单调性,从中体会了数形结合的思想,学会从“特殊到一般再到特殊”的思维方法来研究问题。 【教学反思】

1.给出生活实例和函数单调性的图形语言,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过问题,引发学生的进一步学习的好奇心。

2.给出函数单调性的数学语言。通过教师指图说明,分析定义,提问等办法,使学生把定义与直观图象结合起来,加深对概念的理解,渗透数形结合分析问题的数学思想方法。

3.有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

4.通过安排基本练习题,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

5.让学生体验数学知识的发生发展过程应该成为这节课的一个重要教学目标。函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到自然语言描述,再到数学符号语言描述的进化过程,这个过程充分反映了数学的理性精神,是一个很有价值的数学教育载体。

6.教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。通过对“函数单调性”教学设计,我对“为学习设计教学”有了更深的理解。如果把教学看作是教师带领学生一起去远足,那么学情分析的目的是要分析学生的认知基础,确定一个合情合理的教学起点;目标导向这是要教师分析预期达到的教学效果,即远足所期望到达的目的地,这是教学的根本和核心任务,是教学设

4 计的关键;知识定位则好比是教师要预先分析通往目的地的道路状况,从而决定前进的方法和策略;问题设计则好比是设计行程,恰当安排可以指引师生高效地向着目的地前行。本节课就是通过这样的设计思想来安排教学设计的。

函数单调性教学设计共3篇

第2篇

1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。 2.学会应用函数的图象理解和研究函数的单调性及其几何意义。 过程与方法:

1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。 2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。 情感与态度:

1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。 【重点难点】

重点:函数单调性概念的理解及应用。 难点:函数单调性的判定及证明。 关键:增函数与减函数的概念的理解。 【教学过程设计】

(一)问题情境1.海宁潮,又名钱江潮,自古称之为“天下奇观”。“八月十八潮,壮观天下无”。海宁潮是一个壮观无比的自然动态奇观,当江潮从东面来时,似一条银线,“则玉城雪岭际天而来,大声如雷霆,震撼激射,吞天沃日,势极雄豪”。潮起潮落,牵动了无数人的心。

2.教师和学生一起举出生活中描述上升或下降的变化规律的成语:蒸蒸日上、每况愈下、此起彼伏。

设计意图:创设海宁潮潮起潮落,成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。

观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的? 例如:初中研究y?x时,我们知道,当x0时,函数值y随x的增大而增大。

图象呈逐渐上升趋势?数值y随x的增大而增大;图象呈逐渐下降趋势?数值y随x的增大而减小。

1 2设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。

问题3:如何用符号化的数学语言来准确地表述函数的单调性呢?

对于区间i内的任意两个值x1,x2,当x1?x2时,都有f(x1)?f(x2)。 单调增函数的定义:

问题4:如何定义单调减函数呢? 可以通过类比的方法由学生给出。

设计意图:通过师生双边活动及学生讨论,可以让学生充分参与用严格的数学符号语言定义函数单调性的全过程,让他们亲身体验数学概念如何从直观到抽象,从文字到符号,从粗疏到严密。让他们充分感悟数学概念符号化的建构原则。问题4则要求学生结合图象化单调增函数的定义,通过类比的方法,由学生自己得到单调减函数的概念,在这个过程中,学生可以体会数学概念是如何扩充完善的。

汉语大词典对“单调”的解释是:简单、重复而没有变化。

2.呼应引入,解决问题情境中的问题如:y?2x?1的单调增区间是(??,??);y?

3.单调性是函数的“局部”性质如:函数y?在定义域(??,0)11在(0,??)和(??,0)上都是减函数,能否说y?xx1)。 2(0,??)上上减函数?

引导学生讨论,从图象上观察或用特殊值代入验证否定结论(如取x1??1,x2?

设计意图:学生对一个概念的认识不可能一次完成,教师要善于从多个角度,通过概念变式教学和构造反例帮助学生理解概念的内涵与外延。在学习如何证明一个函数的单调性之前,先与学生一起探讨怎样才能否定一个函数的单调性对帮助学生理解函数单调性的概念尤为重要,可以加深学生对“任意”两字的理解。

通过两例,教师要向学生说明:1.判断函数单调性的主要方法:①观察法:画出函数图象来观察;②定义法:严格按照定义进行验证;③分解法:对函数进行恰当的变形,使之变成我们所熟悉的且已知其单调性的较简单函数的组合。

2.概括出证明函数单调性的一般步骤:取值→作差→变形→定号。 练习:作出函数y?|x?1|?

设计意图:单调性证明是学生在函数内容中首次接触到的代数论证问题,通过本例,要让学生理解判断函数单调性与证明函数单调性的差别,掌握证明函数单调性的程序,并深入理解什么是代数证明,代数证明要做什么事。

(六)回顾总结本节课主要学习了函数单调性的定义,单调区间的概念,能利用(1)图象法;(2)定义法来判定函数的单调性,从中体会了数形结合的思想,学会从“特殊到一般再到特殊”的思维方法来研究问题。

第3篇

本设计基于学生的认知规律,在设计时将尽可能采用探索式教学,让学生自己观察,主动去探索。而教学时尽可能够顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决问题(练习)。而教师在整个过程中充当引导者、组织者,注重培养学生的归纳发现能力、理论证明能力、多位拓展能力等。

函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅是前面所学函数知识的延伸,更为今后的函数学习打下理论基础,还有利于培养学生的思维能力,及分析问题和解决问题的能力。

教学目标的设计: 重点:函数单调性的概念; 难点:函数单调性的判定及证明; 关键:增函数与减函数的概念的理解。 教学目标的确定及依据:

依据教学目标和教育原则,本节知识的特点以及学生已有的知识结构现状,我制定了如下教育教学目标。

(1)、知识目标:理解函数单调性的概念,掌握判断函数单调性的基本方法(作差比较法,作商比较法。主要是做差比较法);了解函数单调区间的概念。

(2)、能力目标:培养学生阅读、自学、分析、归纳能力;抽象思维能力及推理判断的能力和勇于探索的精神。

(3)、情感目标:体会用运动变化的观点去观察、分析事物的方法。培养学生对数学美的艺术体验。在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离。培养学生对数学的兴趣。

教学手段:根据本节内容的特点,为了更有效地突出教学重点,突破教学难点,展示知识的发生过程,提高课堂效率,使教学目标更完美地体现。我将运用现代信息技术辅助课堂教学。使用投影仪对学生探究的成果进行展示。

1 课题引入(引入---设疑----激趣)------- 新授概念(自主探究---成果展示---总结强调) 概念应用1(总结探究-------延伸过渡调) 概念应用2(引导探究----总结归纳) 应用探究 (实践-------总结提高) 课后延展(再实践-------再提高) 2.实施方案

设疑:观察给出的函数的图象,并指出在定义域内的上升与下降情况。 激趣:如何用x与 f(x)来描述上升的图象?如何用x与 f(x)来描述下降的图象?

(意图:明确目标、引起思考。 给出函数单调性的图形语言,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。用提问的方式,简单介绍本节课的主要内容,激发学习兴趣要求学生带着问题阅读教材,通过问题的解决掌握基本内容。有助于培养学生的观察能力、自学能力和解决问题的能力。)

2、增、减函数的定义用语言如何描述?(可以结合初中对函数的描述进行引导)

(意图: 通过展示自学成果,,加深对概念的多方理解,让部分学生体会学习的乐趣,从而激发和带动其他同学的学习积极性。另外强调两点:

2、对于定义域内的某个区间的任意两个自变量成立)

(意图:通过讨论使学生深入理解和掌握概念,培养学生的抽象思维能力,培养学生研究数学的能力,学会归纳总结。)

延伸过渡:一般函数除从图形上判断单调性,还有其它证明和判断方法吗? 引导探究:在例2 的证明中在由x1>x2

判断f(x1) ,f(x2)大小时 的基本方法是什么?还有其它方法吗?(作商法)

1、作差时的基本变形有那些?(主要用:分解因式、配方等)

2 (意图:学生难以从例题中归纳出判断(证明)方法及步骤,所以在详细讲解的过程中,通过分析、引导学生抽象、概括出方法及步骤,提示学生注意证明过程的规范性及严谨性。同时说明数学题型间的转化关系,使学生体验数学中的艺术美。另外通过探究加深对基本方法的掌握,拓宽解题思路使学生容易突破本节的难点,掌握本节重点)

(意图:通过此题的探究、辅导、讲解,强化解题步骤,形成并提高解题能力。调动学生参与讨论,形成生动活泼的学习氛围,从而培养学生的发散思维,开阔解题思路,使学生形成良好的学习习惯)。

1、比较一次函数y=2x+3和二次函数y=x2的图象上有最低点和最高点吗?

3、再换成函数y=2x+3(0(意图:通过练习作业加深对概念的理解,熟悉判断方法,达到巩固,消化新知的目的。同时思考题的设计对下一节的学习起到承上启下的作用。)

★其他类似内容

1玩得真开心教案3篇

玩得真开心教案3篇

本文将分享一份名为“玩得真开心”的教案,旨在通过寓教于乐的游戏体验使学生在轻松愉悦的氛围下获得知识。该教案独具创意,将游...

查看剩余 84% 玩得真开心教案3篇

2岗位实习报告范文集锦3篇

岗位实习报告范文集锦3篇

本文是关于岗位实习报告范文的精选集锦,其中包含了不同行业、不同类型的实习报告,涉及的内容涵盖了实习过程中的经历、心得体会...

查看剩余 82% 岗位实习报告范文集锦3篇

3初中教师个人学期工作总结3篇

初中教师个人学期工作总结3篇

本文为初中教师个人学期工作总结,总结了教师在本学期中的教学成果、教育教学经验、教学难点以及改进措施等方面,旨在探索新的教...

查看剩余 74% 初中教师个人学期工作总结3篇

4暑假乐趣作文锦集3篇

暑假乐趣作文锦集3篇

暑假是孩子们最期待的假期之一,无论是旅游还是游戏,都充满了乐趣。这次我们为大家带来了一份“暑假乐趣作文锦集”,收录了各种...

查看剩余 78% 暑假乐趣作文锦集3篇

5生活作文3篇

生活作文3篇

“生活作文”是以日常生活为素材,通过文艺表达方式表现人们的生活情感、经历与思考,反映社会现实,以及生命的意义。这类作文既...

查看剩余 71% 生活作文3篇