新课标小学五年级下册数学《质数和合数》教案6篇(数学教案:让孩子轻松掌握质数和合数的奥秘)
本文为小学五年级下册数学教案,重点讲解质数和合数。通过教师讲解、练习和互动交流等多种教学方式,学生能够更好地理解区分质数和合数,从而更好地掌握数学知识。
第1篇
教学目标: 1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数 的个数进行分类.
2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.
3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)
练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)
师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?
既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)
3。汇报100以内的质数。师生共同整理100以内的质数表。
练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?
有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。
这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)
反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。
在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。
第2篇
2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。
3、通过探究质数和合数的意义,培养学生的探究意识和能力。
1、透过实际箱装饮料罐的排列方式,感知生活中有数学。
2、能对现实生活中箱装饮料罐的数字信息作出合理解释。
1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。
如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组…)也就是说按不同的标准分有不同的分法。
(1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。
请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数……)
(2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。
学生观察并说一说:9瓶啤酒排成3行3列,9=3×3……
这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)
提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。)
现在老师这儿有13瓶饮料,请你将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?
1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?
(评:这个问题抓住了实质,它是本节课的核心和关键,非常具有思考价值,学生的思维被充分地调动起来。)
四人小组讨论(相机提示:跟这些数的约数有关。仔细观察左边这些数的约数,你发现了什么?)
整理揭示:象这样只有1和它本身两个约数的数叫质数。
1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?
揭示:象这样除了1和它本身,还有别的约数的数,叫合数。
3、比较巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(约数的个数。)
(三)、谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数)
1、判断下列各数(是质数,一、二组举手;是合数,三、四组举手)。
提问50、87的判断方法(联系旧知:能被2、5、3整除的数的特征)
揭示:1只有一个约数,它既不是质数,也不是合数。(cai演示。)
(五)、总结并揭题:这节课我们学到了哪些新知识?
1、学习单1:小组合作完成后,是的画adic;。1、学习单1:是的画adic;。
(5)既是奇数又是合数的有 ( )、( )……
(课件按要求逐步出示数字,学生在自我判断后对照课件上的数字选择离开教室)
第3篇
义务教育课程标准实验教科书五年级下册第23~25页的内容。
质数和合数是在因数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。质数和合数是按各个自然数因数的个数这个标准给自然数进行分类而得到的。掌握质数和合数能帮助求两个的最大公因数、最小公倍数以及对算理的理解。它是整个单元教学的纽带,因此,在本节课的教学中,不仅要着重使学生掌握质数、合数的概念,还要使学生能在本单元众多的抽象概念中,把质数和合数区别于别的概念。并掌握质数、合数和奇数、偶数的区别和联系。
我根据新课标的教学理念和遵循学生的认知规律并结合本节课教材的内容,来确定以下的教学目标。
(1)知识目标:使学生理解质数、合数的意义,掌握质数、合数的判断方法。
(2)能力目标:培养学生观察、对比、分类、概括能力和自学能力。
(3)情感目标:培养学生主动探究精神和渗透一些对立统一的唯物主义思想观点。
5、教学难点:质数、合数和奇数、偶数的区别和联系。
为了让学生轻松、愉快地完成本节课的学习任务。首先,我采用了谈话法来创设情境导入课题,使学生在较短的时间里兴致高昂地进入学习状态。其次,我采用引导发现法,先提出问题,再引导学生去探究,。并通过学生观察、对比、分类、分小组讨论、交流等学习方法来发现新知与概括新知。同时,我也用列表格填写数字的方法辅助教学,为学生提供观察、对比、分类的感性材料。最后,我通过分层次练习的方法,使学生巩固学习成果,增强应用意识。
事实表明,要提高课堂教学效果,必须充分地调动学生的学习动机,使学生积极主动地参与教学。《质数和合数》是一节概念教学课,概念对于小学生来说是抽象的东西,为了使这抽象的概念教学变得有趣味和能让学生能感受到教学内容的价值所在,在导入新课时,我用谈话的方法来激起学生对教学内容的关注与兴趣,让这节课的教学成为学生的心理需求和求知的渴望。我是这样导入的:自然界里的事物无奇不有,聪明的人们总能抓住事物的特点给它们分类,便于人类的掌握和运用,如果要把自然数分成两类,你可以怎样分?随着学生的回答板书如下:
这时,我抓住新知识的生长点,向学生提出:想一想,自然数除了按2的倍数和不是2的倍数,分成奇数和偶数外,还有别的分法吗?有,课本里就给我们介绍了一种新的分法,这种分法是按什么标准来分,分成几类?它叫什么名字?同学们想知道吗?请大家带着以上问题去探究。
我从旧知识导入,提出新的问题,引起学生的求知欲望,促使学生积极自主地去探究新知。
本节课是在学生已经学会求一个数的因数的基础上进行的,所以在授新课开始这个环节,我只做适当的引导,就放手让学生自主地探究新知,这样做既体现以教师为主导,学生为主体的教学原则,又能让每个学生动脑、动手参与学习,成为学习的主人。为了确保学生有足够的探究时间与经历建构新知的过程,我把教材中找出1~20各个数的因数改为找出1~12各个数的因数。首先,我要求学生动手填写1~12各个自然数的因数。学生填写完后,我让学生汇报:
②按照每个数的因数的多少,可以分成哪几种,每一种各有哪些数。
待学生汇报完之后,我用课件出示分出三种情况的1~12各个自然数的因数表,给学生提供观察、对比、分类的感性材料。如下:
接着我提出要求:请同学们观察第二种情况中各数的两个因数,你发现它们的因数有什么特点?(发现2、3、5、7、11只有1和它本身两个因数)(板书)。把第三种情况同第二种情况比较,你又有什么发现呢?(发现4、6、8、9、10、12除了1和它本身还有别的因数)(板书)。按每种情况因数的特点 可以怎样分类呢?请同学们把课本第23页倒数8行文字认真看一遍。学生看完书之后,我又追问:可以分成几类?各叫什么名字?学生汇报(板书)。
最后,我指着因数表让学生观察在1~12各个自然数中,还有哪个数没有被分类。通过感性材料,学生很快就发现1没有被分类。为了突出1的特殊性,我安排学生分组讨论、交流:1是质数还是合数。然后汇报讨论结果(板书)。
以上的教学,我主要是以提问的方式来引导学生有意识、有目的、有层次,循序渐进地、主动地去探究新知识,为本节课概念的揭示打下了基础。
在概念揭示的过程中,为了把新、旧知识都纳入学生的认知之中,我把新旧知识有机地结合起来,逐步完成以下的板书:
板书力求新旧知识主次分明,突出重点。在板书质数和合数的概念时,给关键词语加上点,便于学生抓住特点,掌握概念,区别概念。同时,整个板书也体现了质数、合数和奇数、偶数的区别和联系以及对立和统一,突破了教学的难点。
在新知形成的过程中,我遵循学生的认知规律,重视学生获知识的思维过程。先通过学生操作、观察等方式,再引导学生进行对比分类,在感知的基础上加以抽象概括、归纳新知,从而突出教学重点。也进一步培养学生观察、对比、分类概括能力和自主学习能力。
出示100以内的质数表,并引导学生用去掉2、5、3和7的倍数的方法找到100以内的质数,使学生了解100以内的质数与掌握这种找质数的方法。
学以致用,新知识一旦形成,务必应用它来解决问题,使它进一步形成技能、技巧与解决问题的能力。我认为采取多样化,分层次性地练习能很好地达到这个目的。
这道题是在学生已经掌握质数、合数意义的基础上最基本的题目。尤其要让中、下水平的学生来判断,并鼓励他们说一说判断的方法。让优秀生对他们进行评价,尽量让全部学生都掌握好本节课最基本的知识,以大面积地提高学生的判断和概括的能力及解决问题的能力。
学生在学习质数和合数后,往往会把奇数和质数、偶数和合数混为一体。 所以在前面的教学中,我有意识地将省去找出13~20的质数与合数,目的是想解学生在掌握质数和合数的概念后,能否根据它们意义迅速、准确地写出 13~20的质数与合数。在练习时,为了便于学生观察、对比和分类,我采用列表格填写数字的方法给学生提供可观察、对比的学习材料,使学生在对比、分类中强化对概念的理解。在学生完成练习后,我用课件出示下面的数字对比表格。
让学生观察、对比、分析表中每一栏中的各个数,看看发现了什么。(如:发现最小的奇数是______。______既是偶数,也是最小的质数。最小的合数是_______。奇数中_______占较多。除了_____ 之外,所有的偶数都是_______。在20以内奇数和偶数的个数是 的。)
借助此对比表格与学生的发现,学生很快就掌握了质数、合数和奇数、偶数的区别与联系,并发现了以上的知识点,既巩固了新、旧知识,又扩大了知识面。既培养学生观察和概括的能力,又有利于培养学生思维的敏捷性,也再次突破教学难点。
此题是在第(1)题的基础上进行的基本练习,我认为让学生用打手势的方法来判断比较好,因为它是通过学生动脑、动手地把信息及时地反馈给教师,使教师全方位地了解本节课的教学效果和学生掌握知识的情况,便于课后辅导。在说出理由的环节上,我本着面向全体的原则,让不同水平的学生都说一说,使大多数学生都得到锻炼和成功的机会。
这道练习题是基于课本中你知道吗?中的分解质因数与哥德巴赫猜想的内容而设计的。意图是使学生懂得合数既可以写成几质数相加的形式也可以写成几个质数相乘的形式。强化学生对质数进一步巩固与认识,同时也让学生了解一些有关教学内容以外的知识,拓宽学生的知识视野。
心理学研究表明:小学生的注意力不能持久。所以我设计游戏来激发学生的兴趣,通过游戏活动使学生感受到质数和合数就在身边,处处都可以找到。
让全体学生判断自己的学号是质数还是合数,并与同桌互相说说。最后,再让学号在20以内的学生报数。
(1)请学号是质数的同学站起从小到大一个接着一个报数。如:我是2号,2是最小的质数。
(3)最后请学号既不是质数,也不是合数的同学也站起来报数,并描述一下自己的学号。
这节课我们学习了什么内容?质数和合数的意义是什么?自然数有几种分类方法?各按什么标准来分?你用什么方法些知识?
第4篇
本周星期三,我在28班上了一堂青年教师竞赛课,结合教学进度,我选了《质数和合数》为教学内容。为了能上一堂比较满意的课,我提前几天开始备课,包括学案设计、教学设计和课件,力求达到如下几个效果:
1.利用学案,既调动学生学习的积极性,又激发学生自主学习的内驱力
新课程理念突出强调改变学生的学习方式,重点培养学生自主学习的能力。强调以改变学生的学习方式为切入点,把教学立足点,由教师的教转向学生的学,把备教案变为备学案,为学生提供课堂自主学习的文本和方案。学案导学是指以学案为载体,以导学为方法,以教师的指导为主导,以学生的自主学习为主体,师生共同合作完成教学任务的一种教学模式。在这种教学模式中,学生根据教师设计的学案,认真阅读教材,了解教材内容,然后根据学案要求完成相关内容,学生可提出自己的观点或见解,师生共同研究学习。学案是教师用来帮助学生掌握教学内容、沟通学与教的桥梁,也是培养学生自主学习和建构知识能力的一种重要媒介,它能够引导学生获取知识,习得能力,体验到学习的乐趣和成功的快乐。
2.采用类比的学习方法结构,使学生能自主探究学习内容
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,不但能使数学知识容易理解,而且能使公式的记忆变得顺水推舟的自然和简洁。因数与倍数就可以采用类比的学习方法,从一个数的最小因数是1,最大的因数是它本身可以类比到一个数的最小倍数是它本身,没有最大的倍数,从一个数的因数的个数是有限的可以类比到一个数的倍数的个数是无限的,同样,研究了一个数(2、5、3)的倍数的特征后,我们同样可以采用类似的方法研究一个数的因数的特征。如研究2的倍数的特征,我们先列举一些2的倍数如2、4、6、8、10、12、14等等,然后分析这些2的倍数的特征,再归纳概括出个位上是0、2、4、6、8的数都是2的倍数。最后,给出了偶数、奇数两个概念。同样,我启发学生采用同样的方法研究一个数(1~12各数和学生任找两个数)的因数的个数的特征。
3.体现活力课堂小组合作、自主探究、民主和谐、快乐有效的十六字方针
小组合作是天元区课堂改革的最主要形式,是活力课堂的关键要素;自主探究是在教师智导下的学生自主探究;民主和谐,教师要把课堂的话语权、质疑权、探究权、评价权真正还给学生,让课堂充满浓浓的人文情怀,让师生之间充满民主和谐的氛围;快乐有效,要从课堂教学的形式上进行改革,让课堂活起来,动起来。
上完课之后,感觉比较满意,感到满意的地方有:1.首次采用学案备课而学生反响比较好;2课件采用了文本框形式,能够和学生互动,吸引了学生眼球,提高了学生学习兴趣;3.思路清晰,重点突出,难点分析透彻,大部分学生能够当堂理解质数和合数是按照因数的个数进行分类的,并且与奇数和偶数的分类标准进行了对比和区别。
当然,这堂课还有些做得不够好的地方,比如:只要求学生把数按因数的个数分成三类,这样束缚了学生的思维;评价方式不够积极,学生回答对了,多数是生硬的个人加一分,小组加一分,学生回答错了,有时是不对,换人回答,极易打击学生回答问题的积极性。
生8:有些奇数的因数个数少于偶数个数。4有3个因数,15还有4个因数呢!
师:如果根据因数的个数将这些数分类,你会怎么分?
生1:有一个因数分一类,有两个因数分一类,三个因数分一类,四个因数分一类……
师:其实在数学上有这样一种分类方法,将只有两个因数的分成一类,请你们看一看哪些数只有两个因数?
教师引导学生用完整的数学语言表达质数的概念,理解概念。
师:数学上把含有两个以上因数的数叫合数。合数最少有几个因数呢?
生:不能,质数有两个因数,合数最少也要有三个因数。
在这一教学片断中,我根据学生的课堂表现改变了原有的教学思路,摒弃了让学生自主分类的方法,直接把分类的方法呈现给学生,当时课堂上作这一考虑是源于学生的无绪回答。我认为对于按因数的个数分类,能按质数与合数分类标准的进行分类的学生应该很少,除非提前预习了课文的内容,不然,大部分学生都会按因数的个数进行一一分类,如果顺着学生的思路下去,这样的分类将毫无意义,最终都会因达不到教师的教学目的,教师又得重起炉灶,将质数与合数的分类标准传授给学生,这样不仅会浪费宝贵的时间,另一方面又会给学生造成一种错觉:我们自己想出来的没有老师讲得好,最后还得听老师的,不如我一开始就等待。
另外,在教学中我发现单纯的让学生理解质数与合数的概念,并不是件困难的事情,我相信不少学生完全可以通过自己阅读课本理解概念,对自然数进行正确地判断。既然学生自学都可以完成,那这节课的重点就不能仅停留在让学生分类上,分类这一问题本身就有不同的标准,如果将课堂上大量的教学时间用不定期探讨不确定的分类标准,意义并不大,还不如通过学生的自主学习让学生经历概念的形成过程,从而加深对概念内涵的认识。本着这一点考虑,当学生的认识出现偏差时,我直接抛出了分类的标准,放手让学生观察质数的两个因数的特点,通过找质数加深理解。可能是学生的学习兴趣太浓,当学生充分认识质数概念以后,并不满足而是接二连三的提出一些问题,随着这些问题的提出,合数与1的认识也就水到渠成了。
第5篇
1、使学生理解质数和合数的意义,能正确判断一个数是质数还是合数。
3、在学习活动中培养学生自主探索、独立思考的能力。
二、教学重难点理解质数和合数的意义,会正确判断。
自然数按照是否是2的倍数可以分成哪两类?最小偶数是几?
⑴今天,我们来学习自然数的另一种分类方法,按因数的个数分。请同学们拿出已经做好的1~20的因数,根据因数个数完成表格。
一个数,如果只有1和它本身两个因数,这样的数叫质数,也叫素数。
一个数,如果出了1和它本身,还有别的因数,这样的数叫合数。
小结:除了1和它本身以外,它还是其他数的倍数,这个数就是合数。
我们已经认识了质数和合数两个新朋友,现在请同学们快速地找出表格中100以内的质数。
⑴先思考交流,有什么好办法可以帮我们又快又准确地找出质数,一个也不漏下。
⑶整理100以内大的质数,看看哪个同学的整理方法又清楚又方便记忆。
除了2,其他质数都是奇数。 质数的个位一般不会是0、2、4、6、8除了2和5这两个数。
我们是质数,把我们相加和是20,把我们相乘积是91,。( )( )
经过这节课的学习,你知道按因数的个数怎样给自然数分类了吗?
这样分类,包括所有的自然数了吗?0怎么办?为什么?
问题一:问题的针对性不够明确,导致浪费了很多时间。
试教时出现的状况:分类时,让学生按自己的方式,结果出现五花八门的分法,再分析引导花了七八分钟时间。
处理办法:分类时,出现表格,让学生根据表格要求进行分类。
问题二:知识点的小结和提炼不够及时,导致学生在练习中的错误很多。
试教时出现的状况:通过探究得出质数和合数的意义后,马上进行填空练习,这时候学生对意义还没有进过咀嚼消化,因此练习中错误很多。
处理办法:通过探究得出质数和合数的意义后,加入一个简单练习,判断这些数是质数还是合数,通过判断巩固意义,熟练判断方法。再做综合性的填空练习,效果会更好。
经过调整,总算在下午开课时还算顺利地把课上下来了。
第6篇
前面,我们按照一个数是否能被2整除可以把自然数分为两类,奇数和偶数。今天我们能否重新给自然数分类呢?说着,我在黑板上板书了自然数三个字,并在下面画了一个椭圆。
生③:我也同意把自然数分为三类,就是squo;1squo;、squo;质数squo;和squo;合数squo;。
她把1画在一个小小的圈里(上图①),为什么把squo;1squo;画在这个小小的圈里呢?我不解地问。
squo;1squo;虽然这一类只有一个,可它也是一类啊,对不对?是一类就应该享有平等的squo;权利squo;,是吗?我问大家。
那你们再来猜猜看,在非零自然数中是质数多还是合数多?
1、片断重在解决两个问题,一个是1在非零自然数的这一次分类中到底占有几席之地?一个是质数和合数两者中谁的个数更多?第一问题学生可以丝毫不经思考地把1圈在一个很小的圈里,这是学生真实的想法,因为1就只有一个数,而质数和合数有那么多,就应该在那个集合里画一个小小的圈。可是从分类的角度出发,尽管1只有一个数,质数和合数各有那么多,可1在这里它也代表着一类,类与类之间应该是平等的,各有自己的特征,所以把非零自然数的分类作了上述处理。
2、学生从1~12这12个数的分类中可以明显地感觉到,质数少于合数,于是大多数人认为质数少,合数多。那么教师就要借助于自然数个数、有没有最大自然数等学生的已有认识进行有效的迁移,逐渐浸润极限的思想,让学生在朦胧中感觉两者皆为无限多。在这里,教师就要打碎学生初步的、原生态的固有思维习惯,把它调整到数学的、合理的、有挑战性的思维平台上来,这是又一次思维水平的提升。
1高中励志演讲稿6篇
高中励志演讲稿可以帮助学生激发自信、增强自我认知,鼓励他们攻克困难,追求梦想。这类演讲稿涵盖了多种主题,如求学、职业规划...
查看剩余 79% 高中励志演讲稿6篇
2人力资源规划方案6篇
本文将探讨人力资源规划方案的重要性和实施步骤,为企业管理提供科学依据和方法论。通过有效的人力资源规划,企业可优化资源配置...
查看剩余 90% 人力资源规划方案6篇
3青春励志演讲稿6篇
“青春励志演讲稿”是一种鼓舞人心、力求激励青年学子前行的演讲形式。它富有感染力,能够引导听众从内心感受到青春的力量和价...
查看剩余 89% 青春励志演讲稿6篇
4人事专员年终总结优秀范文6篇
本篇文章为人事专员年终总结优秀范文分享,旨在为各位同行提供参考,指导年终总结的写作和思路。范文结构完整,内容详实,帮助读...
查看剩余 88% 人事专员年终总结优秀范文6篇
5个人思想工作总结6篇
个人思想工作总结是对自身思维方法、认识逻辑、社会观察和判断力等方面进行自我反思和总结的过程。通过总结,可以发现自身思想中...
查看剩余 85% 个人思想工作总结6篇