平行四边形教案集锦3篇(四角形学堂:平行四边形教案精选)
本文是关于“平行四边形教案集锦”的介绍。在这个教案集锦中,我们会深入探讨平行四边形的概念、性质、特点和应用。通过精心设计的教案,帮助教师们更好地教授平行四边形的知识,并提供丰富的教学资源。无论是初学者还是需要巩固复习的学生,都可以从中受益良多。
第1篇
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
2.难点:平行四边形的判定定理与性质定理的灵活应用.
平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.
(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.
(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:
①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;
(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的.直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.
然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.
在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.
(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.
(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.
(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.
本节课安排了3个例题,例1是教材p96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2 对角线互相平分的四边形是平行四边形
第2篇
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
1.如图,单杠ac的高度为5m,若钢索的底端b与单杠底端c的距离为12m,求钢索ab的长.
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔ab的高,如何计算各条拉索的长?
活动一 如图,起重机吊运物体,已知bc=6m,ac=10m,求ab的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
1.(1)在rt△abc中,∠c=90°,若bc=4,ac=2,则ab=______;若ab=4,bc=2,则ac=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点a爬到点b处吃食,要爬行的最短路程( 取3)是 ( )
3.如图,笔直的公路上a、b两点相距25km,c、d为两村庄,da⊥ab于点a,cb⊥ab于点b,已知da=15km,cb=10km,现在要在公路的ab段上建一个土特产品收购站e,使得c、d两村到收购站e的距离相等,则收购站e应建在离a点多远处?
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
?例1】 如图,在△abc中,∠b=2∠c,ad⊥bc于d,m为bc的中点, ab=10cm,则md的长为 .
思路点拨 取ab中点n,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
?例2】 如图,在四边形abcd中,一组对边ab=cd,另一组对边ad≠bc,分别取ad、bc的中点m、n,连结mn.则ab与mn的关系是( )
思路点拨 中点m、n不能直接运用,需增设中点,常见的方法是作对角线的中点.
?例3】如图,在△abc中,ab=ac,延长ab到d,使bd=ab,e为ab中点,连结ce、cd,求证:c d=2ec.
思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.
?例4】 已知:如图l,bd、ce分别是△abc的外角平分线,过点a作af⊥bd,ag ⊥ ce,垂足分别为f、g,连结fg,延长af、ag,与直线bc相交,易证fg= (ab+bc+ac).
(2)bd为△abc的内角平分线,ce为△abc的外角平分线(如图3),则在图2、图3两种情况下,线段fg与△abc三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.
思路点拨 图1中fg与△abc三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段fg与△abc三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.
注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的'一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.
?例5】 如图,任意五边形abcde,m、n、p、q分别为ab、cd、bc、de的中点,k、l分别为mn、pq的中点,求证:kl∥ae且kl= ae.
思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.
注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.
1.bd、ce是△abc的中线,g、h分别是be、cd的中点,bc=8,则gh= .
2.如图,△abc中、bc=a,若d1、e1;分别是ab、ac的中点,则 ;若 d2、e2分别是d1b、e1c的中点,则 :若 d3、e3分别是d2b、e2c的中点.则 ……若dn、en分别是dn-1b、en-1c的中点,则dnen= (n≥1且 n为整数).
3.如图,△abc边长分别为ad=14,bc=l6,ac=26,p为∠a的平分线ad上一点,且bp⊥ad,m为bc的中点,则pm的值是 .
4.如图, 梯形abcd中,ad∥bc,对角线ac⊥bd,ac=5cm,bd=12cm,则该梯形的中位线的长等于 cm.
5.如图,在梯形abcd中,ad∥ef∥gh∥bc,ae=eg=gb=ad=18,bc=32,则ef+gh=( )
6.如图,在梯形abcd中,ad∥bc,e、f分别是对角线bd、ac的中点,若ad=6cm,bc=18?,则ef的长为( )
7.如图,矩形纸片abcd沿df折叠后,点c落在ab上的e点,de、df三等分∠adc,ab的长为6,则梯形abcd的中位线长为( )
8.已知四边形abcd和对角线ac、bd,顺次连结各边中点得四边形mnpq,给出以下6个命题:
9.如图,已知△abc中,ad是 高,ce是中线,dc=be,dg⊥ce,g为垂足.求证:(1)g 是ce的 中点;(2)∠b=2∠bce.
10.如图,已知在正方形abcd中,e为dc上一点,连结be,作cf⊥be于p,交ad于f点,若恰好使得ap=ab,求证:e是dc的中点.
11.如图,在梯形abcd中,ab∥cd,以ac、ad为边作平行四边形aced,dc的延长线交be于f.
(2)s△bce能否为s梯形abcd的 ?若不能,说明理由;若能,求出ab与cd的关系.
12.如图,已知ag⊥bd,af⊥ce,bd、cf分别是∠abc和∠acb的角平分线,若bf=2,ed=3,gc=4,则△abc的周长为 .
13.四边形adcd的对角线ac、bd相交于点f,m、n分别为ab、cd中点,mn分别交bd、ac于p、q,且∠fpq=∠fqp,若bd=10,则ac= .
1 4.四边形abcd中,ad>bc,c、f分别是ab、cd的中点,ad、bc的延长线分别与ef的延长线交于h、g,则∠ahe ∠bge(填“>”或“=”或“<>
15.如图,在△abc中,dc=4,bc边上的中线ad=2,ab+ac=3+ ,则s△abc等于( )
16.如图,正方形abcd中,ab=8,q是cd的中点,设∠daq=α,在cd上取一点p,使∠bap=2α,则cp的长是( )
17.如图,已知a为de的中点,设△dbc、△abc、△ebc的面积分别为s1,s2,s3,则s1、s2、s3之间的关系式是( )
18.如图,已知在△abc中,d为ab的中点,分别延长ca、cb到e、f,使de=df,过e、f分别作ca、 cb的垂线,相交于点p.求证:∠pae=∠pbf.
19.如图,梯形abcd中,ad∥bc,ac⊥bd于o,试判断ab+cd与ad+bc的大小,并证明你的结论.
20.已知:△abd和△ace都是直角三角形,且∠abd=∠ace=90°.如图甲,连结de,设m为d正的中点.
(2)设∠bad=∠cae,固定△abd, 让rt△ace绕顶点a在平面内旋转到图乙的位置,试问:mb;mc是否还能成立?并证明其结论.
21.如图甲,平行四边形abcd外有一条直线mn,过a、b、c、d4个顶点分别作mn的垂线aa1、bb1、ccl、ddl,垂足分别为al、b1、cl、d1.
(2)如图乙,直线mn向上移动,使点a与点b、c、d位于直线mn两侧,这时过a、b、c、d向直线mn引垂线,垂足分别为al、b1、cl、d1,那么aa1、bb1、ccl、ddl 之间存在什么关系?
第3篇
本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”
?数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
?追问】如果让你测量花坛的面积,你也用数格法吗?
?询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
s=ah(用s表示平行四边形的'面积,用a表示平行四边形的底,h表示平行四边形的高)
快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
2.如果这个平行四边形的底是4厘米,那么能画出几种?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
1手指点画教案7篇
“手指点画教案”是一种创新教学方法,在幼儿教育中得到广泛应用。这种教学方法通过手指点画、模仿画法等方式,让幼儿通过触摸...
查看剩余 71% 手指点画教案7篇
2幼儿园教案范文汇总4篇
本文汇总了多篇幼儿园教案范文,为幼教工作者提供了有益的借鉴和参考。这些教案内容详尽,方案实用,涵盖了多个年龄段的幼儿教学...
查看剩余 70% 幼儿园教案范文汇总4篇
3小班美术教案范文锦集5篇
本文为小班美术教案范文锦集,收集了多篇小班幼儿美术教案范文,涵盖了手工、画画、拼贴等多种主题和技法。适用于小班教师进行美...
查看剩余 88% 小班美术教案范文锦集5篇
4中班音乐教案模板合集5篇
本站提供中班音乐教案模板合集,涵盖了中班各阶段的音乐教学内容,帮助老师们更好地规划教学,并提高孩子们的音乐素养和情感体...
查看剩余 70% 中班音乐教案模板合集5篇
5小班手指游戏教案8篇
小班手指游戏教案是一种针对幼儿手部协调能力训练的教学方案。通过有趣的游戏形式,激发幼儿的兴趣,培养他们的观察力、注意力、...
查看剩余 76% 小班手指游戏教案8篇