《求小数的近似数》教案5篇(「化小数为整数的简便方法」- 一份小数近似数求解教案)
本教案主要面向数学初学者,探讨如何快速求小数的近似数。通过实际例题和实操练习,帮助学生了解四舍五入、截断法以及科学计数法等常见求近似数的方法,从而提升算数运算的准确性和效率。
第1篇
本节课教学用”四舍五入”的方法求一个小数的近似数。教材以地球和太阳之间的距离为素材,设计了三个问题组织学生进行探索。先通过例1,引导学生用“四舍五入”的方法把1.496精确到十分位,再通过例2,引导学生用同样大方法把1.496精确到百分位,然后引导学生比较上面求出的两个近似数,理解保留的小数位数越多,求出的近似数越精确。教材安排“试一试”与例题不同的是,这里取近似数的过程中需要把百分位舍去。并引导学生总结和归纳求小数近似数的方法。
教学中引入生活实例,通过探究、互动、总结、归纳等活动,让学生掌握求小数的近似数的方法,要注意结合具体情境求小数近似数,让学生体会数学的应用价值。
1、会根据要求用“四舍五入”的方法求一个小数的近似数。
2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。
3、进一步理解和掌握所学的知识,体会数学在日常生活中的广泛应用,感受数学的文化价值。
学生已经掌握了把大数目改写成整万、整亿数和整数近似数的知识,为本节课求一个小数的近似数奠定了基础。
昨天老师到银行办事,听见一位老爷爷和储蓄员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,储蓄员付给爷爷9.5元,爷爷硬要9.6元,你觉得付多少比较合理?
今天我们学了求一个小数的近似数之后,你就会解决生活中这类现象了。(出示课题)
(1)20xx年全国有小学生145371600人。也可以说:20xx年全国大约有小学生(万)人。
(2)光的传播速度是每秒钟299800千米。也可以说:光的传播速度大约是每秒钟(万)千米。
2.下面的□里可以填上哪些数字?32□645≈32万47□05≈47万
然后让学生进行独立思考,发表意见,说出结果及想法。
(3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。
精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。
想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。
想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。
精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,
引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。
引导学生讨论知道:求一个小数的近似数要注意两点:
(1)要根据题目的要求取近似值,如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。
(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。
第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。
①求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……
②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.
说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。
(1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。
5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。
今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?
1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。
2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。
因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。
既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。
第2篇
●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点:能正确的求一个小数的近似数。
教学难点:怎样准确的求一个小数的近似数。
师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?
生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。
师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)
师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)
师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的.近似数呢?今天我们就来一起学习。师板书课题。
1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)
[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]
我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。
师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?
师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?
生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。
(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。
(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。
引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。
师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。
师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。
②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。
(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。
(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)
(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。
(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。
师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。
四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。
第3篇
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
1、同学们还刻求整数的近似数的'方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。
第4篇
1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。
3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
1、把下面各数省略万位后面的尾数求出它们的近似数。
师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数
用什么方法?(四舍五入法)根据学生回答师板书:四舍五入
引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。
让学生独立完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。
接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。
小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位......
在上本节课之前,已经观看了几次本班学生的学习过程,对学生们大概有所了解,发现个别学生的纪律稍有点散漫。为了使全班同学们能够进入一个好的积极的学习状态,我并不急于先上课,而是把那些慢悠悠的,表现不佳的同学的积极性做了调动,同学们的上课精神开始集中了,但是已经占用了上课的三分钟时间。
求一个小数的近似数是在学生掌握了求整数的近似数的基础上进行的,其方法基本相同。因此我设计了求整数的'近似数的复习题并让学生说出自己的想法,为学习新知做好铺垫。在探求新知部分同学们掌握较好,但是因为时间关系,原先设计的练习题未能全部完成,有些遗憾。
1、授课语言不够生动灵活,过于单调生硬,未能更好地激发学生的学习兴趣,学生的学习热情还不够高。
2、时间安排不够合理,造成提供学生自我展现的机会较少,未能达到充分锻炼学生表达能力的效果,造成有个别学生对求一个小数的近似数的方法理解得不够深刻。
3、课前准备不够十分充足,造成对时间分配地把握不够准确,而且练习量相对少了一些,未能更好的巩固本节课的教学知识。
上好一节不容易,不但需要教师有深厚的理论功底,而且还得掌握有效的教学方法与技巧。
第5篇
教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。
教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。
教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。
先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。
教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。
我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。
教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?
教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)
省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)
接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)
做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。
教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?
教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)
省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)
用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)
教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。
做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。
教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?
根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。
教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)
指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:
教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。
教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。
教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。
教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。
1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。
2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。
1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。
教师先提问:精确到十分位是什么意思?(保留一位小数。)
然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。
1小班手指游戏教案8篇
小班手指游戏教案是一种针对幼儿手部协调能力训练的教学方案。通过有趣的游戏形式,激发幼儿的兴趣,培养他们的观察力、注意力、...
查看剩余 75% 小班手指游戏教案8篇
2幼儿园教案范文汇总3篇
本文汇集了多篇幼儿园教案范文,包括语言、数学、科学、艺术等多个方面,涵盖了幼儿园各年龄段的教学内容。这些范文旨在为广大老...
查看剩余 85% 幼儿园教案范文汇总3篇
3大班语言活动教案汇总2篇
本文为大班语言活动教案的汇总,旨在为幼师们提供丰富的语言活动教案,帮助他们提高幼儿语言表达和沟通能力,培养良好的语言习惯...
查看剩余 71% 大班语言活动教案汇总2篇
4玩得真开心教案3篇
本文将分享一份名为“玩得真开心”的教案,旨在通过寓教于乐的游戏体验使学生在轻松愉悦的氛围下获得知识。该教案独具创意,将游...
查看剩余 80% 玩得真开心教案3篇
5幼儿园小班教案范文集锦3篇
本文集锦为幼儿园小班教师提供了丰富的教案范文,涵盖语言、数学、艺术、体育等多个领域,旨在帮助教师提高教学效果。教案范文贴...
查看剩余 85% 幼儿园小班教案范文集锦3篇