圆的认识教案8篇("完美圆形——教你认识圆的属性与制作方法")

圆是我们生活中经常出现的图形之一,其形状饱满,充满了稳定、团结和完整的意象。因此,对于幼儿园教师来说,如何引导孩子正确地认识和理解圆形,是一项重要的教育任务。本文将为您介绍圆的认识教案,帮助您更好地教授幼儿认识和理解圆形。

圆的认识教案8篇

第1篇

1.知识目标:掌握圆各部分名称以及圆的特征;会用圆规画圆。

2.能力目标:借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

3.情感目标:渗透知识来源于实践、学习的目的在于应用的思想。

研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?

师:看来大家平时非留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?

师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)

前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)

1.导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(1分钟)

2.师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

3.展示探究结果。结合多媒体课件辅助,完整认识圆的.特征(8分钟)

结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。

课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小

学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作

如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示

?2〉你能用今天学习的圆的知识去解释一些生活现象吗

(举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?

看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

?3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语。有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)

师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的范围有多大好吗?

用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆,拴羊的绳子与这个圆有什么关系吗?

(是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?

圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。

(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)

连接圆心到圆上任意一点,确定圆的大小,长度都相等〈在同一个圆里〉

直径(d)线段,通过圆心,两端都在圆上,长度都相等。〈在同一个圆里〉

要让学生明白只有在同圆或等圆内,所有的半径才相等;所有的直径才相等;半径才是直径的一半,直径才是半径的2倍。

圆的认识教案8篇

第2篇

1、经历“材料感知——聚类分析——归纳概括——抽象命名”的过程,感悟和理解画圆的基本原理。

2、理解圆心和半径的概念、认识半径、圆心等概念及其相互关系,掌握圆的基本特征。会用字母表示圆心、半径。

理解圆心和半径的概念、认识半径、圆心等概念及其相互关系,掌握圆的基本特征。

看,这些都是生活中常见的物体,你能找到什么相同的图形?生活中还有哪些物体是圆的?

俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是不出圆的。同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?

第一层次:在不同情境中画圆,感受事实,积累体验。

演示方法:一种是先在纸上定一个点,再拉开圆规的两脚,旋转圆规一周。另一种是先在纸上定一个点,再拉开圆规的两脚,然后旋转纸张一周,同样也得到了一个圆。

用眼睛看顾老师画圆,用你的头脑去思考,老师是怎样画圆的?

刚才我们用圆规在黑板上画了一个圆,在纸上也画了一个圆,如果我们要在学校的操场上画一个比较大的圆,老师的圆规不够大怎么办?看一下体育老师在操场上是怎样画圆的。边看边思考在操场上画圆与在黑板上和纸上画圆有什么异同?(播放录像:体育老师伸直手臂,手拿长柄勺子,站在原地旋转一周,勺子中的白粉随人体的旋转过程逐渐抖落而形成一个圆。)

第二层次:经历材料聚类分析的过程,归纳并概括提炼画圆的原理。

1、我们在黑板上画了圆,在纸上画了圆,在操场上也画了圆,这几次画圆,尽管画圆的地点变了,画圆的工具也各不相同,但是它们有没有什么相同的地方?小组之间讨论一下。

小结:通过刚才四个不同情境中的画圆,我们发现它们都有三个共同的`特点:一、确定一个点;二、确定一段距离;三、旋转一周。

第三层次:抽象命名圆心和半径,形成圆的核心概念。

1、刚才所有的活动中,固定点叫做圆的圆心,用字母o表示。圆上所有的点到圆心都有相等的长度,这个长度就叫做圆的半径,用字母r表示。

2、学生在所画圆中标出圆心,画出半径并用字母表示。

橡皮筋4、生活中有没有运动的圆,说说它们的圆心和半径又在哪里。

学到现在,关于圆,还有没有什么值得我们深入地去研究?

其实就圆心、半径,还蕴藏着许多丰富的规律呢,同学们手中都有圆片、直尺、圆规等等,这就是研究工具。老师给大家准备了研究提示,请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。

预设:折:把一个圆先对折,再对折、对折,这样一直对折下去,展开后就发现圆上有许多的半径。

老师没有折,也没有画,而是直接想出来的,知道我是怎么想的?

(因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,正好说明半径有无数条吗?)

量:在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。

折:将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。

既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。

出示同心圆:为什么一个大一个小?(因为两个圆的半径长度不同)

圆的大小和它的半径有关,那它的位置和什么有关呢?

2、同学们正在操场上开展“投球”比赛。哪一种方式比较公平?

今天我们研究了圆,知道了画圆的基本原理,理解了圆心和半径的概念,发现了圆的基本性质。以后我们也会像研究长方形、正方形一样,进一步研究圆的周长和面积计算问题。

第3篇

九年义务教育人教版小学数学第十一册第四单元《圆的认识》

1、知识目标:认识圆,知道圆的各部分名称,掌握圆的特征,理解同圆和等圆中半径和直径的关系,会用圆规画圆。

2、能力目标:通过操作和观察,培养学生抽象概括能力,使学生初步学会运用所学的数学知识来解决简单的实际问题。

3、情感目标:培养学生的合作意识,培养学生的探索精神和创新意识。教学重点:理解并掌握圆的特征。教学难点:掌握圆的正确画法。

通过举行“抢小红旗”游戏的赛场设计,让学生评判其公平性,通过观察初步感知圆中心到圆上任意一点的距离相等。

2、同学们,通过预习你们对圆已经有了哪些认识?你能用预习圆的知识来说说理由吗?对圆的认识你还有哪些疑惑?学生质疑板书课题

师:这只是我们的观察,要想真正说明它的公平我们必须得验证一下。板书:贴钥匙图:①为什么?

1、拿出准备好的圆形纸片,谁说说你怎么得到的圆?

出示实验报告单,学生量一量、折一折、画一画的方法,汇报交流画圆的方法。

师:好,现在我们得到圆了,为了公平小旗应该插在哪里?

通过找插小旗的位置,找到圆的圆心,并揭示圆心的概念。好,现在找到插小旗的位置了,接下来我们可以怎么做了?“怎么做?”通过引导学生找到要测量的线段揭示半径、直径的概念。

好,在你的圆里分别画出半径、直径,并标好字母。(练习巩固半径、直径)

3、你可以折一折、量一量去研究一下,看这样的赛场是否公平了。开始吧。(自主探究发现半径都相等):

1、在同一圆内的半径有多少条?每条半径之间有什么关系?

师:刚才我们学到好多关于圆的知识,可别小看我们的发现,

早在两千多年前,我国著名的思想家墨子,在他的著作中就有了这样的记载:圆,一中同长也。那这一中指什么?谁同长?正是圆的这种特征才让我们感觉到这个平面图形这么的光滑、这么的饱满、这么的匀称。

1、尝试画圆,出现问题,学生汇报出现问题,掌握正确方法。

2、再次画圆半径4厘米的圆,体验圆规画圆的好处。师:怎样才能既准确又方便的画出一个圆呢?

②画圆时要注意什么?(定点不能移动,定长不能改变)

师:我们感觉得到生活中好多物品都是圆形的,比如自行车轮为什么要做成圆形呢,你能用学到的知识解释吗?

师补充:自行车应用了圆的一中,同长的特征当车轮在平地上滚动时,轮轴始终处于同一高度的平面上,乘坐的人就不会有上下颠簸的感觉,很平稳,很舒服。

2、在操场画一个半径20米的大圆圈做游戏。古人说“没有规矩,不成方圆”一定是这样吗?

师:在操场上,怎样画出这个圆?没有圆规,能不能画圆?

3、说说你这节课的收获?(老师把这几个问题制成金钥匙送给你们,因为问号是开启智慧的钥匙。红字部分提示学生学习方法)

师:其实在我们生活的每一个角落,这样对圆的特征的应用举不胜举。在这个赛场上,应用了圆使得比赛更加的公平。还有这些转动中的圆,这与它结构的一中同长是有着密切联系的。

至于在古老的东方,圆在我们身上遗留下的印痕更是深刻而广远的。石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳??而所有这一切,给予我们的不正是一种微妙的启示吗?这也让我想起古希腊数学家毕达哥拉斯的一句话:“在一切平面图形中圆最美”就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

第4篇

1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。

在观察、操作中体会圆的特征。知道半径和直径的概念。

1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。

2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。

3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)

4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。

2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。

3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)

1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。

1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直

4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?

讨论:圆的'位置和什么有关系?圆的大小和什么有关系?

2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)

动手操作,理解画圆的关键是定圆心(位置)和半径(大小)

圆(本质特征):圆上各点到定点(半径)的距离都相等。

同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。

在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆

第5篇

师:同学们见过平静的水面吗?如果我们从上面丢下一颗小石子,你们会发现什么?

师:像这样的现象我们随处可见(播放课件),就请同学们和老师一起进入圆的'世界。

师:要想认识圆首先就得会画圆,同学们能利用手中的工具圆规试着画出一个圆吗?

师:我发现有的同学画的圆不是很圆,你能说说这是为什么吗?

师:圆中心的一点也就是我们用圆规画圆时针尖固定的一点,叫做圆心。用字母o表示圆心,用字母r表示半径,用字母d表示直径。

师:请同学们任意选一条折痕把它画下来。再仔细观察一下圆内的这条线段你还有什么发现?

师:象这样的一条线段我们给它一个名称叫直径。用字母表示。

师:请同学们折一折,画一画,量一量,比一比,并且按照老师给你们的提示讨论,看看能得出什么结论?(课件出示问题)

(1)在同一个圆里,可以画多少条半径,多少条直径?

(2)在同一个圆里,半径的长度都相等吗?直径呢?

如果学生没说同一个圆里,老师应重点引导学生说同一个圆里。

第6篇

1、通过学生的画圆、剪圆、折圆等活动,使学生认识圆,发解圆的各部分名称,掌握圆的特征以及半径、直径的关系,理解圆心、半径、直径的作用。

2、在画圆、剪圆、折圆等活动中,培养学生的观察、分析、辨析、概括能力。

教学重难点:认识圆及其特征,能够正确地用圆规画圆。

教具学具准备:理解圆的半径的含义及作用。

师:同学们,老师手里拿的是什么?(圆)关于圆,同学们一定不会感到陌生,请你们想一想,生活中你们在哪里见到过圆?

师:圆在生活中随处可见,让我们一起来欣赏一下吧。(课件播放教材57页主题图)

师:圆把我们的世界点缀得如此美妙、神奇。今天就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题:圆的认识)

设计意图:让学生感受身边各种圆形图案带来美的享受的同时,体会到生活与数学密切联系,自然而然地引出课题,激发学生主动探索圆的欲望。

师:老师给每个小组都发了一个布袋,里面放了一些以前学过的平面图形卡片,闭上眼睛,你能很快摸出圆吗?把你的想法和小组内的成员说一说。

活动后汇报:你为什么一下就能说出摸到的是圆?圆和我们学过的其他的平面图形有什么区别?

师:(结合学生的回答)圆是由一条曲线围成的封闭图形。

师:请同学们再次闭上眼睛摸着圆的边,想象一下圆的形状。

设计意图:通过摸圆的活动让学生认识圆,通过想象、验证、动手操作,亲身体验到圆是由一条曲线围成的封闭图形。初步感知了圆的基本特征。

师:刚才同学们已经认识了圆,那么,想不想把它画出来呢?

学生自由画,稍后,老师评价学生画的圆:说一说你是怎样画的?用了什么方法?

师:比较一下,用什么方法画的圆比较好?(圆规画圆)

学生完成后,教师让学生每四人一组,把四个人画的圆放在一起,相互欣赏。

师:欣赏完刚才四个同学画的圆以后,你们发现四个人的作品有什么不一样吗?

师小结:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚上。

(1)教师示范画一个完整的圆,然后对圆讲解:用圆规画圆时,针尖所在的点叫做圆心。

(2)请同学们拿出你们的学具,上下对折、打开,出现一条折痕;左右对折、打开,又出现一条折痕;换个方向再对折、打开,如此做几次,你们发现了什么?

师明确:圆中心的这一点叫做圆心,圆心一般用字母o表示。

(3)设疑:同学们刚才画的圆的位置不一样,你们认为这是由什么决定的?

(1)小组合作。在你的学具圆上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?

(2)用自己的话说一说什么叫半径?学生回答后出示概念及表示方法。

师:连接圆心和圆上任意一点的线段叫做半径。半径一般用字母r表示。

(3)请同学们仔细观察,想一想:半径应具备哪些条件?在同一个圆中,可以画几条半径?所有的半径长度都相等吗?

师小结:半径是一端在圆心,另一端在圆上的线段;在同一个圆中有无数条半径,所有的半径长度都相等。

(4)设疑:刚才同学们画的圆有大有小,你们认为它与什么有关?

(1)小组合作。拿出你的学具圆,用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?

(2)说一说什么叫直径。学生回答后出示概念及表示方法。

师:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

(3)请同学们仔细观察,想一想:直径应具备哪些条件?在同一个圆中,可以画几条直径?所有的直径长度都相等吗?

师小结:直径通过圆心,并且两个端点都在圆上;在同一个圆中有无数条直径,所有的直径长度都相等。

学生用尺子独立量出自己手中圆的直径和半径长度,看它们之间有什么关系,然后讨论测量结果,找出直径与半径之间的关系。

师生共同小结:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的。用字母表示为:d=2r或r=。

设计意图:让学生经历动手操作、观察发现的过程,在操作、观察中认识圆的各部分名称,发现圆的基本特征,理解和掌握同一个圆中直径与半径之间的关系,体验自主感悟新知的过程。

(2)提出设计要求:以圆为基本图形,运用旋转、平移和轴对称等图形的变换方式,利用圆规和直尺一步一步画出来。

小结:用圆规和直尺画圆的步骤和方法。①观察圆的特点;②用圆规和直尺一步一步地画圆;③擦去多余的线条并涂色。

设计意图:让学生充分认识到圆在图案设计中的作用,在设计展示中让学生的想像力和创造力得到认可和肯定。

这节课我们学习了什么?通过这节课的学习,你有什么收获?

第7篇

1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。

2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。

师:同学们,这些问题你们暂时还不必回答,但老师还有一个问题需要马上回答,这三个问题都与什么有关?

师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)

[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。

(学生回答时,教师可要求学生将已准备的实物举起展示)

师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢?(课件展示)

一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。

1、师:接下来做个小实验,老师用图钉固定线的一端,将细线拉直,绑有粉笔的一端旋转一周,会出现什么现象?

师:松开细线的这头,粉笔还能转圈吗?(孕伏“定点”意识),图钉按住起什么作用?

师:图钉按住的一端(不动),带粉笔的一端我们把它看作一个点,这个点是(运动的),怎么运动的?

师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。

3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)

[设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。

1、通过回想前面的游戏,让学生在感悟“圆的形成”过程中思考:你会画圆吗?

2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)

(让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)

两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”

随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。

师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。

[设计意图] “画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的.问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。

师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆,这是为什么?

师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)

教师将“圆心o”“半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。

师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)

师:在同一个圆里,像这样的半径还能画吗?有多少条?为什么有无数条?

师:那它们的长度都有怎样的关系呢?谁来说说你的想法?

你们和数学家们总结差不多呢!翻到56页,全班齐读。

师:那它们的长度都有怎样的关系呢?谁来说说你的想法?

5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述(课件出示)

6、判断:以下圆内哪些线段是半径,哪些线段是直径?

课件验证:在同一个圆里,直径长度是半径的2倍,半径是直径的1/2。 d=2r r=1/2d

疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?

[设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。

4、在同一个圆里,圆心到圆上任意一点的距离都相等。()

[设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。

师:课的一开始,我们还留下三个问题(课件重返“三个问题”):由于时间关系,我们现在集中解决第一个问题好吗?

2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)

①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)

②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)

[设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。

1、引言:同学们,世界是美妙的、神奇的,有了圆更增添了她的梦幻般的色彩。请欣赏

摩天轮、花丛中肆意绽放的鲜花、中国传统的圆形剪纸、陶瓷艺术、圆形建筑、2008年奥运奖牌、神秘的阴阳太极图……

还有古老的东方,中国人特别重视中秋、除夕、元宵等佳节,月下尝饼、桌上汤圆…这就意味着团圆、圆满;大陆同胞送给台湾同胞的团团、圆圆两只熊猫,不也就是盼望祖国早日统一,海峡两岸同胞早日团圆吗?

圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!

同学们,在这优美的旋律中,我们这堂课也接近尾声了。这节课愉快吗?你觉得这节课上得圆满吗?

[设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。

第8篇

知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,

能力目标:让学生认识直径和半径的关系,能找出圆的对称轴。

转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。德育目标:让学生养成在交流、合作中获得新知的习惯。

出示课本的情景图,动物设计的汽车,思考兔博士的问题。

师:你想过没有,车轮为什么要做成圆形?车轴又是安装在哪儿的?又是为什么?生答。

师:这一切,都跟圆的知识有关,这节课,让我们一起来认识圆(板书:圆的认识)

生:一些圆形钟面,纽扣是圆形的,硬币是圆形的,球(球是立体图形,把球从中间剖开得到的剖面才是圆形。圆也是一种平面图形。)

师:圆在生活中无处不在,古希腊的一位数学家曾经说过,在一切平面图形中,圆是最美的。

2、用一个瓶盖或圆柱体在纸上描出一个圆,并剪下来。

教师进行总结。明确圆是轴对称图形,它有无数条对称轴,同时介绍直径和半径。4思考下面几个问题。

(1)在同一个圆里可以画多少条半径,多少条直径?

(2)在同一个圆里,半径的长度都相等吗?直径呢?

师:你量出你画的圆的半径是多少?其他同学呢?量直径的同学呢,有没有不同的意见。

师:怎么不相等?要使半径都相等,必须加上一个前提条件。(板书:在同一个圆里与等圆中)

(同一个圆的直径是半径的2倍,半径是直径的一半。谈话:你能用字母表示它们之间的关系吗?(板书:d=2r,r=d÷2)

师:它的对称轴是什么?(直径所在的直线是圆的对称轴。)

师:同学们掌握得真好,下面让我们来完成几道挑战题。

2判断练习,全班学生一起用手势表示自己的意见。(正确的举手,错的不举手)

(2)要画直径是4厘米的圆,圆规两脚间的`距离是4厘米。

师:为什么车轮子要设计成圆形而不设计成方形或其它形状呢?

把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.

师:数学中也有很多美,只要你认真探究,善于发现你就能感受到美。

★其他类似内容

1玩得真开心教案3篇

玩得真开心教案3篇

本文将分享一份名为“玩得真开心”的教案,旨在通过寓教于乐的游戏体验使学生在轻松愉悦的氛围下获得知识。该教案独具创意,将游...

查看剩余 85% 玩得真开心教案3篇

2幼儿园小班教案范文集锦3篇

幼儿园小班教案范文集锦3篇

本文集锦为幼儿园小班教师提供了丰富的教案范文,涵盖语言、数学、艺术、体育等多个领域,旨在帮助教师提高教学效果。教案范文贴...

查看剩余 77% 幼儿园小班教案范文集锦3篇

3小班关于圣诞节的教案7篇

小班关于圣诞节的教案7篇

《小班关于圣诞节的教案》是一份精心设计的教学教案,适用于小班级孩子的圣诞节主题课程。教案内容兼顾了知识点的掌握和趣味性的...

查看剩余 71% 小班关于圣诞节的教案7篇

4《桂林山水》优秀教案7篇

《桂林山水》优秀教案7篇

本文为桂林市教育局选出的优秀教案之一——《桂林山水》教案的介绍。该教案针对小学生的生活经验和认知水平,通过多种教学方法...

查看剩余 80% 《桂林山水》优秀教案7篇

5《静夜思》教案范文锦集3篇

《静夜思》教案范文锦集3篇

本篇文章是针对《静夜思》教案的一份范文锦集,旨在帮助教师更好地教授该诗歌。《静夜思》是唐代诗人李白的一首脍炙人口的诗作...

查看剩余 85% 《静夜思》教案范文锦集3篇