平行四边形教案范文集锦4篇(四角齐放:精选平行四边形教案大全)

本文以“平行四边形教案范文集锦”为主题,为教育工作者提供了一系列优质教案范文。针对平行四边形的相关知识,结合实际教学经验,我们精心编撰了这些范文,旨在帮助教师们更好地进行课堂教学,提升学生的学习效果。无论您是初中数学教师还是对平行四边形感兴趣的人士,这些范文定能满足您的需求。

平行四边形教案范文集锦4篇

第1篇

重点分析 平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.

难点分析 平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.

本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.

1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.

2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.

3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.

通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力,数学教案-平行四边形的判定。

1。复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)

2。小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?

(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查,初中数学教案《数学教案-平行四边形的判定》。对个别差生稍加点拨,最后请学生回答画图方法) 学生可能想到的画法有:⑴ 分别过a、c作dc、da的平行线,两平行线相交于b; ⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶ 分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。

还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出 连结ac,取ac的'中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。

上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得 研究的问题“平行四边形的判定”(板书课题)。

1。要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。

2。现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。

自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)

3。再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)

完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)

1。再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?

阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一) 2。变式题

⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)

⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)

⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)

⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?

平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc(怎样证最简便?)

1。今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

2。这些平行四边形的判定方法中最基本的是哪一条?

3。平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?

平行四边形教案范文集锦5篇

第2篇

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。

2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的.面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

2.讨论:下面两个平行四边形的面积相等吗?为什么?

第3篇

2、在动手操作实践的过程中,探索并掌握平行四边形的性质。

1、通过探索与证明平行四边形的性质,发展演绎推理的能力;

2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想.

1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;

2、通过对性质的证明,进一步提升逻辑推理的数学核心素养.

ppt呈现:类比是伟大的引路人,转化是智慧的思想家.

几何学习,是一场充满挑战与惊喜的旅行,老师很荣幸今天能和在座的同学们继续我的平面几何之旅.

同学们推测一下,接着我们会研究那种平面图形?四边形

我们就从生活中常见的一类特殊的四边形——平行四边形研究起.

平行四边形的定义:两组对边分别平行的四边形,叫做平行四边形.

学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形.

平行四边形的符号表示:abcd,读作“平行四边形abcd”

(注意表示时,四个顶点a、b、c、d的书写顺序只能按顺时针方向或逆时针方向)

对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线.

教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚.

平行四边形是中心对称图形,两条对角线的交点是它的对称中心.

例:已知:如图,在□abcd中,e,f是对角线ac上的两点,并且ae=cf。

变式1:已知:如图,在abcd中,e,f是对角线ac上的两点,并且ae∥df。

变式2:已知:如图,在abcd中,e,f是对角线ac上的两点,并且be平分∠abc,df平分∠adc.

2、如图,在平面直角坐标系中,□abcd的三个顶点为a(0,0)、b(4,0)、d(1,2),则顶点c的坐标是_____________。

3、小强用30米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是10米,则与这条边相邻的边的长度是________米.

5、如图,在□abcd中,am平分∠bad,bm平分∠abc,∠amb____。

四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?

选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中.

本节课是《平行四边形》这一章的章起始课,促使学生对平面图形的学习进行系统性的认识.

小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身.

突出学生课堂主体的地位,加深对平行四边形定义的认识.

1、学生通过观察、动手操作,经历平行四边形性质的探索和发现过程,发展合作交流的意识,提升探究能力;

2、在动手操作额过程中,发现并验证了平行四边形是中心对称图形;

3、使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想.

1、学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的`几何证明,提升学生的推理论证能力.

2、转化思想:将四边形问题转化为三角形问题来研究.

2、激励学生分析、解决问题的热情,进一步提升推理论证的能力.

本例是对所学的平行四边形性质定理的简单应用。教学时让学生先独立思考,再组织学生进行交流。鼓励学生充分表达他们寻求证明思路的过程。

这两个问题是对例题条件进行变化,结论不变,以促进学生对平行四边形性质的熟练掌握与灵活运用.

1、这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想.

2、第4题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;

3、第5题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形.

2、此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;

1、作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”.

2、选做部分为了促进学生养成分类梳理数学问题的习惯.

第4篇

1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?

(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)

实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)

例1(教材p98例4)如图,点d、e、分别为△abc边ab、ac的中点,求证:de∥bc且de=bc.

分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.

方法1:如图(1),延长de到f,使ef=de,连接cf,由△ade≌△cfe,可得ad∥fc,且ad=fc,因此有bd∥fc,bd=fc,所以四边形bcfd是平行四边形.所以df∥bc,df=bc,因为de=df,所以de∥bc且de=bc.

(也可以过点c作cf∥ab交de的延长线于f点,证明方法与上面大体相同)

方法2:如图(2),延长de到f,使ef=de,连接cf、cd和af,又ae=ec,所以四边形adcf是平行四边形.所以ad∥fc,且ad=fc.因为ad=bd,所以bd∥fc,且bd=fc.所以四边形adcf是平行四边形.所以df∥bc,且df=bc,因为de=df,所以de∥bc且de=bc.

定义:连接三角形两边中点的线段叫做三角形的中位线.

(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?

(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)

三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。

★其他类似内容

1摇篮教案中班7篇

摇篮教案中班7篇

摇篮教案中班是一种针对0-2岁婴幼儿的早期教育理念,通过亲子互动、身体感觉和语言启蒙等方式,促进婴幼儿的身心发展。本文将结合...

查看剩余 78% 摇篮教案中班7篇

2大班语言活动教案汇总3篇

大班语言活动教案汇总3篇

本文汇总了多个大班语言活动教案,包括听力、口语、阅读和写作等方面。这些教案旨在为幼儿园大班学生提供丰富多彩的语言体验,锻...

查看剩余 77% 大班语言活动教案汇总3篇

3手指点画教案8篇

手指点画教案8篇

“手指点画教案”是一种适用于儿童学习的教学方法,旨在通过手指点画、模仿绘画、语言描述等方式,帮助孩子们学习写字、数学等基...

查看剩余 85% 手指点画教案8篇

4玩得真开心教案2篇

玩得真开心教案2篇

本次教案以“玩得真开心”为主题,力图通过游戏和活动的形式,让学生们在轻松愉悦的氛围中学习知识、增强体质、培养团队合作精神...

查看剩余 72% 玩得真开心教案2篇

5摇篮教案中班8篇

摇篮教案中班8篇

《摇篮教案中班》是一本面向0-3岁儿童的亲子教育指南,旨在帮助父母早期教育孩子的重要性,促进儿童身心健康发展。本书涵盖了情感...

查看剩余 79% 摇篮教案中班8篇